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Abstract— Inspired by the pioneering work by Held and Hein
(1963) on the development of kitten visuo-motor systems, we
explore the role of active body movement in the developmental
process of the visual system by using robots. The receptive
fields in an evolved mobile robot are developed during active or
passive movement with a Hebbian learning rule. In accordance to
experimental observations in kittens, we show that the receptive
fields and behavior of the robot developed under active condition
significantly differ from those developed under passive condition.
A possible explanation of this difference is derived by correlating
receptive field formation and behavioral performance in the two
conditions.∗

I. INTRODUCTION

Perception in the natural case is a process dependent as

much on the sensory systems available to the organism as

on its motor activity. This is not only because the stream

of sensory inputs is directly affected by movements and ad-

justments (such as scanning, focusing, orienting, positioning)

but often also because perceptual invariants are built upon

correlations between sensory and motor dynamics. Evidence

of this double dependence is provided by classical experiments

on visual adaptation to distortion of the visual field (Stratton,

1896, 1897; Kohler, 1964; Taylor, 1962), where perceptual

adaptation only takes place after many days of the subject ac-

tively engaging in different behaviors. The adaptations thereby

achieved are typically non-transferable to other behaviors–

which themselves must be enacted in order to adapt–and they

do not take place if the subject is passive or moved externally.

A similar dependence is found in the process of percep-

tual development. For instance, Held and Hein (1963) have

shown that normal visual development depends not only on

movement of the body relative to the environment, but also on

self-actuated movement. The authors performed an experiment

(Figure 1) in which the gross movements of a kitten moving

almost freely (active kitten) were transmitted to a second kitten

that was carried in a gondola (passive kitten). Consequently,

they received identical visual stimulation, but only one of

them received that stimulation as a result of self-movement.

Importantly, only the active kitten developed normal behavior

in several visually guided tasks, such as paw extension on

∗An abbreviated version of some portions of this article appeared in Suzuki
et al. (2005), published under the IEEE copyright.

approaching horizontal surface from above and blinking at

object put in front of its eyes, while the passive one failed.

The authors concluded that visual stimulation correlated with

self-actuated movement was necessary for the development of

the visual control of behavior. However, it is still not clear how

the active body movement of the kitten enabled it to develop

such visually guided behaviors.

Fig. 1. The original apparatus in Held and Hein (1963), where the gross
movements of a kitten moving almost freely were transmitted to a second
kitten that was carried in a gondola. Both kittens were allowed to move
their head. They received essentially the same visual stimulation because
of the unvarying pattern on the walls and the center post of the apparatus.
Reproduced, with permission, from (Held, 1965).

A host of experiments has shown that the characteristics

of biological and artificial adaptive systems strongly depend

on the type of inputs they receive during the developmental

process (e.g. Blakemore and Cooper, 1970). Additionally,

active vision, i.e. the sequential and interactive process of

selecting and analyzing parts of a visual scene, selects the

subset and sequence of images that the visual system perceives

(Bajcsy, 1988; Aloimonos et al., 1987; Aloimonos, 1990;

Ballard, 1991). Thus, it is tempting to speculate that the way

of scanning of the visual scene may significantly alter the

development of the visual system of the animal.

Indeed, recent experimental results suggest that free explo-

ration of the visual field may impact the development of the



visual system. Betsch et al. (2004) showed that the exploration

strategy and the difference of vantage point of animals signif-

icantly altered the statistics of natural scenes. This is fully

consistent with the lesson from the studies of visuo-tactile

interfaces for blind people (see Bach-y-Rita and Kercel, 2003,

for a review). The authors showed that human subjects could

develop visually-guided behavior capabilities only if they were

allowed to manipulate the camera by themselves, and that if

someone moves the camera for them, they just sense a noisy

stream of inputs, but no “visual” perception. Furthermore,

it was demonstrated that active exploration in a naturalistic

environment had a powerful impact on the expression of

plasticity in whisker-deprived adult rats (Polley et al., 1999,

2004). These results suggest that the development of the visual

system largely depends not only on the characteristics of the

visual field but also on the behavior of the perceivers.

Recent advances in computational neuroscience have shown

that relatively simple models of developmental visual systems

are capable of developing qualitatively similar properties to

those found in the early stages of visual processing in cats

and monkeys (Hancock et al., 1992; Field, 1994; Olshausen

and Field, 1996; Rao and Ballard, 1999). However, those

models often use images from publicly available databases or

photographs taken in a natural environment as visual stimuli,

and do not allow the system to freely interact with the

environment and choose those sensory events.

Previously we have investigated the co-development of

active vision and receptive fields within the same time scale

using behavioral robotic systems (Floreano et al., 2004). We

have shown that co-evolved feature selection and active vision

can address a variety of visual tasks that range from complex

shape discrimination to navigation in complex environments

by means of very simple mechanisms. However, the system

investigated in those experiments could not change during the

life of the “organism”.

In this article, we go one step further and explore the

role of active body movement in the formation of the visual

system by studying the development of visual receptive fields

and behavior of robots under active and passive movement

conditions. The receptive fields in an evolved mobile robot are

developed during active and passive movement with a Hebbian

learning rule. We show that the receptive fields and behavior

of robots developed under active condition significantly differ

from those developed under passive condition. Our analyses

show that the coherence of receptive fields developed in active

condition plays an important role in the performance of the

robot. This article is an extended version of the conference

paper (Suzuki et al., 2005) to provide a more complete and

detailed experimental setup and behavioral analyses.

II. METHODS

We use a Koala (K-Team S.A.) wheeled robot equipped

with a pan/tilt camera (Sony EVI-D31), shown in Figure 2.

The robot has six wheels, but only the central wheel on each

side is motorized. The pan and tilt angles of the camera are

controlled by two separate and independent motors.

The neural control system of the robot is evolved by means

of a genetic algorithm to perform collision-free navigation

in an enclosed space using only visual information. The

algorithm evolves the neural controller through random mu-

tations, crossover, and a competitive selection process until

an evolutionary stable control strategy is found (Nolfi and

Floreano, 2000). The details of the evolutionary algorithm

are described at the end of this section. The visual receptive

fields of the neural network are modified online while the

robot is evaluated. The modification consists of a Hebbian

learning rule that tends towards the principal components of

the input image set. At the end of the evaluation phase, the

resulting receptive fields are not memorized in the genotype of

the neural controller. The interactions between evolution and

learning are described in a separate article (Floreano et al.,

2005). In this article we study the development of receptive

fields in evolved robots, that is in robots that are capable of

displaying collision-free navigation. In particular, we analyze

the formation of receptive fields while the robot is let free

to behave according to the evolved sensory motor pathways

and while the robot is constrained to move according to a

variety of externally imposed motor commands. We call the

first case “active behavior” and the second “passive behavior”

in accordance to the methodology used in the kittens study.

In order to collect data from several independent runs and

perform rigorous statistical analysis, we used fast, physics-

based simulations of the robot and its environment (Figure 2,

bottom). The texture of the surfaces in the simulated environ-

ment was generated from pictures taken in the real outdoor

environment.

Fig. 2. Top left: The Koala mobile robot by K-TeamTM with pan/tilt camera
by SonyTM . Top right: The real environment. Bottom left: Simulation of the
robot and the environment. Bottom right: View from the simulated camera.
The robot is capable of visually accessing the 5×5 pixels in the center of the
image.

The neural architecture consists of a simple feedforward

network with evolvable thresholds and discrete-time, fully-

recurrent connections at the output layer (Figure 3). The

input layer is an artificial retina of 5 by 5 visual neurons

that receive input from a gray level image of 240 by 240



pixels. Visual neurons have non-overlapping receptive fields

that receive information from a 48 by 48 pixels (240/5) area

of the image. The state of visual neurons is determined by

the activation of the filter output unit of the network. For

activation values below 0.5, the state of each visual neuron

corresponds to average gray level (scaled in the range [0,1])

of the corresponding image patch (Figure 4, center). For

activation values equal to or above 0.5, the state of each visual

neuron corresponds to the gray level (scaled in the range [0,1])

of the top leftmost pixel of the corresponding image patch

(Figure 4, right). In addition, two proprioceptive input neurons

encode the measured horizontal (pan) and vertical (tilt) angles

of the camera. These values are in the interval [−100, 100] and

[−25, 25] degrees for pan and tilt, respectively. Each value is

scaled in the interval [0, 1] so that activation 0.5 corresponds

to 0 degrees (camera pointing forward parallel to the floor).

Filter Pan Tilt Wleft Wright 

Hidden 

neurons

Visual neurons

Proprioceptive 

neurons Memory inputs

Bias

Fig. 3. The architecture is composed of a grid of visual neurons with non-
overlapping receptive fields whose activation is given by the gray level of the
corresponding pixels in the image; a set of proprioceptive neurons that provide
information about the movement of the camera with respect to the chassis of
the robot; a set of output neurons that determine at each sensory motor cycle
the filtering used by visual neurons, the new pan and tilt speeds of the camera,
and the rotational speeds of the two wheels of the robot; a set of memory units
whose outgoing connection strengths represent recurrent connections among
output units; and a bias neuron whose outgoing connection weights represent
the thresholds of the output neurons.

Fig. 4. The two filtering strategies of visual input. Left: Snapshot from the
robot camera. Center: Pixel average. Right: Pixel sample. The choice between
these two strategies can be dynamically changed by one output neuron at each
time step.

The activations of the output units are passed through the

sigmoid function. Two output units determine the speeds of

the wheels of the robot. Activation values above 0.5 stand

for forward rotational speed whereas activation values below

0.5 stand for backward rotational speed. Two output units

encode the speed of the motor of the camera on the horizontal

(pan) and vertical (tilt) planes in the same way described

above. If the camera has reached a maximum allowed position

([−100, 100] and [−25, 25] degrees for pan and tilt, respec-

tively), output speeds in the same direction have no effect.

The remaining output unit encodes the filtering strategy, as

described above. Recurrent connections are implemented by

adding a set of memory units that encode a copy of the output

unit activations at the previous time step (Elman, 1990).

The connections between visual neurons and hidden neurons

are randomly initialized at the beginning of the life of each

individual (for more detail, see Appendix). These connections

are modified by means of a Hebbian learning rule, which has

been shown to produce connection strengths that approximate

the eigenvectors corresponding to the principal eigenvalues of

the correlation matrix of the input patterns (Sanger, 1989). In

other words, this learning rule approximates Principal Com-

ponent Analysis (PCA) of the input images (Jolliffe, 1986).

The modification of connection strength ∆wij depends solely

on postsynaptic and presynaptic neuron activations yi, xj ,

∆wi,j = yi

(

xj −

i
∑

k=1

wkjyk

)

(1)

where k is a counter that points to postsynaptic neurons

up to the neuron whose weights are being considered. The

new connection strengths are given by wt+1 = wt + η∆wt
ij

where 0 < η ≤ 1 is the learning rate, which in these

experiments starts at 1.0 and is halved every 80 sensory motor

cycles. This learning rule has been widely used in previous

computational models of receptive field development (e.g.

Hancock et al., 1992). Among the several available models

of synaptic plasticity (see Hinton and Sejnowski, 1999, for a

review), we opted for this one because it can be applied online

while the robot moves in the environment and because it is

equivalent to a widely used technique for image compression.

The neural network is updated at discrete time intervals

of 300 ms. At each time interval (sensory motor cycle), the

following steps are performed: 1. the activations of the visual

and proprioceptive neurons are computed, the values of the

memory units are set to the values of the output units at

the previous time step (or to zero if the individual starts its

“life”); 2. the activations of the hidden units are computed

and normalized; 3. the activations of the output units are

computed; 4. the camera and wheels of the robot are set

at the corresponding rotational speed for one sensory motor

cycle; 5. the connection weights from visual neurons to hidden

neurons are modified using the current neuron activation

values.

In step 2 the activations of five hidden units are normalized

to operate within the same range of variability in order to

equalize the contributions of hidden units to activations of the

output units. Notice that this procedure is necessary to prevent

the output units of the neural network to depend mainly

on the activation of the first one or two hidden units. Our

preliminary study showed that the principal five eigenvalues of



the correlation matrix of the input vector corresponding to the

variances of activation of the hidden neurons have different

magnitudes (for more detail, see Suzuki et al., 2005). This

means that the activations of the hidden neurons will display

different ranges of variability. The normalized output value of

the kth hidden neuron o′k is computed by: o′k = ok × s1/sk

where ok and sk denote the current output value of kth hidden

neuron and the standard deviation of all stored output values

up to the current time step (s1 when k = 1).

The neural network has 65 evolvable connections (including

bias connections) that are individually encoded on five bits

in the genetic string (total length=325). A population of

n genomes is randomly initialized by the computer. Each

genome is decoded into the corresponding neural network

and tested for a number of trials during which its fitness

is computed. Each individual genome is then decoded into

the connection weights of the neural network (except for the

connections from visual neurons to hidden neurons, which

are randomly initialized) and tested on the robot while its

fitness is computed. A population of 100 individuals is evolved

using truncated rank-based selection with a selection rate of

0.2 (the best 20 individuals make 4 copies each) and elitism

(a randomly chosen individual of the population is replaced

by the best individual of the previous generation). One-

point crossover probability is 0.1 and bit-toggling mutation

probability is 0.01 per bit.

III. SIMULATIONS AND RESULTS

A. Evolution with synaptic plasticity

In this experiment the robots are evaluated in the context

of collision-free navigation. The fitness function was designed

to select robots for their ability to move straight forward as

long as possible for the duration of life of the individual.

This corresponds to the amount of forward rotation of the two

motorized wheels of the robot. Each individual is decoded

and tested for four trials, each trial lasting 400 sensory motor

cycles.1 A trial can be truncated earlier if the operating system

detects an imminent collision.

The fitness criterion F (Sleft, Sright) is a function of the

measured speeds of the left Sleft and right Sright wheels:

F (Sleft, Sright) =
1

E × T

E
∑

e=0

T ′

∑

t=0

f(Sleft, Sright, t) (2)

f(Sleft, Sright, t)

= (St
left + St

right)×
(

1 −

√

|St
left − St

right|

2 × Smax

)

(3)

where Sleft and Sright are in the range [-8, 8] cm/sec and

f(Sleft, Sright, t) = 0 if Sleft or Sright is smaller than 0

(backward rotation); E is the number of trials (four in these

experiments), T is the maximum number of sensory motor

1Preliminary experiments reported in Floreano et al. (2005) show that less
than 300 updates are necessary to stabilize the plastic weights from visual to
hidden neurons.

cycles per trial (400 in these experiments), T ′ is the observed

number of sensory motor cycles (for example, 34 for a robot

whose trial is truncated after 34 steps to prevent collision with

a wall).

At the beginning of each trial the position and orientation

of the robot are instantly randomized and the synaptic weight

values are re-initialized to random values. We performed these

replications of the evolutionary run starting with different ge-

netic populations. In all cases the fitness reached stable values

in less than 20 generations (Figure 5) which corresponded to

collision-free trajectories. Notice that the fitness can never be

one because the robot must rotate in order to avoid walls.
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Fig. 5. Evolution with synaptic plasticity. Left: Population average (thin line)
and best fitness (thick line) during evolution in physics-based simulations.
Each data point is the average of three evolutionary runs with different
initializations of the population. Vertical lines show the standard error. Right:
An example of trajectory of the best individual in the last generation while
synaptic plasticity is active. A dot is plotted every 20 sensory motor cycles.

Previously we have shown that the resulting fitness values

are comparable to those of the evolved robot without learning–

all of the synaptic weights in the same architecture were

genetically determined and not allowed to change during

behavior (Floreano et al., 2005). Furthermore our preliminary

study suggests that not only the generalized Hebbian algorithm

(equation 1) that is consistently used in this article, but another

learning rule, Oja’s M -unit rule (Oja, 1989), can also be

applied, that is, the fitness achieves the comparable values.

B. Visual development during active or passive movements

After evolution the receptive field formation of the best

evolved individuals were studied in two behavioral conditions:

one where the evolved robot was free to control the movements

of its wheeled platform and of the camera, and another where

the movement of the wheeled platform was constrained (but

not that of the camera). First, we let the evolved robot move

freely while the receptive fields were developed (we label

the resulting receptive fields in active movement condition

RFa). In the second condition, the same evolved robot was

constrained to move according to four pairs (Sleft, Sright) of

wheel speeds while the receptive fields were developed.

• Behavior 1: (Sleft, Sright) = (Smax,−Smax)
• Behavior 2: (Sleft, Sright) = (0.4×Smax,−0.4×Smax)
• Behavior 3: (Sleft, Sright) = (Smax, 0)
• Behavior 4: (Sleft, Sright) = (Smax, 0.2 × Smax)

where Smax denotes the maximum speed of the wheels (8

cm/s). We call these four behaviors “passive” to highlight that



the evolved neural network can not control the wheels 2 and

label the resulting receptive fields RFp1, RFp2, RFp3, and

RFp4. Behavior 1 and 2 correspond to ‘turning-on-the-spot’

while behavior 3 and 4 produce small circular behaviors with

different radii. The camera could be freely controlled by the

evolved neural controller in all four passive conditions.

In both conditions, the robot was located randomly at the

beginning of each test and allowed to move for 400 sensory

motor cycles while the visual receptive fields were developed

from initial random weights. The test was repeated ten times

for each condition starting from different random weights and

locations. Figure 6 shows the receptive fields resulting from

active and passive behaviors of one trial. We could not measure

any statistical difference or distance between the five sets of

receptive fields.

After development in the active and four passive conditions

the corresponding receptive fields RFa, RFp1, RFp2, RFp3

and RFp4 were fixed and the performance of the robot was

evaluated while the robot moved freely for maximum 400

sensory motor cycles. Figure 7 shows that the performance

obtained with receptive fields developed during active behavior

(RFa) is significantly better than those with receptive fields

developed during passive behavior (RFp1−4). A typical tra-

jectory of the robot with fixed RFa and that of the robot

with fixed RFp2 are shown in Figure 8. The other trajectories

corresponding to the receptive fields developed under the

remaining three passive conditions, RFp1, RFp3 and RFp4,

are similar to that of RFp2.

Neuron1 Neuron2 Neuron3 Neuron4 Neuron5

RFa

RFp1

RFp2

RFp3

RFp4

Fig. 6. Receptive fields of five hidden neurons developed in active and
passive conditions. Small shaded squares represent the connection strengths
from visual neurons, scaled so to fill the gray scale from black (minimum
value) to white (maximum value). The leftmost receptive field in each row
corresponds to the first principal component of the visual input experienced
by the robot. A receptive field is the pattern of synaptic strengths to a neuron,
here plotted as a gray level matrix.

2Passive behavior was accomplished by simply neglecting the output values
(Wleft, Wright) of the neural controller and reading one of the four pairs
(Sleft, Sright) of wheel speeds instead. However note that the output values
(Wleft, Wright) were not overwritten by (Sleft, Sright) but copied to the
memory units so that passive behavior of the robot would be analogous to
that of the kitten carried in a gondola in that they could move their wheels
or legs freely without any contribution to the actual movement of their whole
bodies.
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Fig. 7. Performances of the robot with receptive fields developed in active
(RFa) and passive (RFp1−4) conditions. The fitness values are averaged over
ten tests. Vertical lines show the standard error.

Fixing RFa

start

Fixing RFp2

start

Fig. 8. Trajectory of the robot with fixed receptive fields after development.
Left: With RFa, the receptive fields developed during active behavior. Right:
With RFp2, the receptive fields developed during passive behavior 2. A
dot is plotted every 20 sensory motor cycles. The trajectories corresponding
to receptive fields developed under the remaining three passive conditions,
RFp1, RFp3 and RFp4, are similar to that of RFp2.

IV. ANALYSIS

A. Lesion Studies

This section describes a variety of behavioral analyses to

understand why the performance of RFa differs from that of

RFp1−4. First, we investigated the role of RFa by lesioning

hidden units one at a time and testing the lesioned controller in

the environment ten times for a duration of 400 sensory motor

cycles each. Lesion was performed by clamping the activation

value of the neuron to a constant value of 0.5 (approximately

equal to the average activation level). During these tests the

receptive fields were not allowed to change.

Figure 9 shows that lesions of the first and second units

(units 1-2) affects performance most significantly in the case

of RFa. This finding was validated by another set of tests

where simultaneous lesion of the first two units significantly

reduced the robot’s performance, but simultaneous lesion of

the last three units did not.3

Then, we noted that the receptive fields of the first two units

developed in passive condition 2 (RF2) were similar to those

developed in active condition, but that the performance of that

neural controller was one of the worst observed.

3These results can not be simply explained by the larger variance attributed
to the first two units by the learning algorithm because, as described in
section II, the magnitudes of the output of the five hidden units are normalized
so that each hidden unit can equally contribute to firing of the output units.
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Fig. 9. Performance with lesioned RFa. ‘L1’ denotes the performance of the
robot when the first hidden neuron was lesioned; ‘L345’ when units 3, 4, and
5 were lesioned simultaneously. Fitness values are averaged over ten tests.
This figure shows that the first and second hidden neurons play an important
role for the performance of the robot. Horizontal dashed line represents the
fitness value of the robot with intact receptive fields.

A possible explanation of the performance difference be-

tween neural controllers developed in active and passive condi-

tions is that the neurons that capture statistically less dominant

features (neurons 3, 4, and 5) may develop sensitivity to

“interfering” features in the passive conditions. To test the

validity of this hypothesis, we lesioned simultaneously neurons

3, 4, and 5 in the passive conditions and tested the performance

of the robot. Figure 10 shows that the performances of the

robot were, as expected, improved by lesioning units 3, 4,

and 5. These neurons may interfere with the first two neurons

by capturing information that “distracts” or contrasts the

information provided by the first two neurons, which encode

statistically dominant features of the environment.

Furthermore, if the coherence of the receptive fields is at

least as important as the actual information encoded, then

substituting receptive field developed in passive condition

with those developed in active condition should not restore

the performance of the robot fully. In a first set of tests,

the receptive fields of units 3, 4, and 5 of neural controller

developed in passive conditions were substituted by those

developed in active condition (Figure 11, gray bars). The

performances of the robot with modified RFp1−4 were not

consistently better as when lesioning units 3, 4, and 5. A

notable exception is the case of RFp2. The performance is

very close to that with RFa because the receptive fields of the

first two units are very similar. In the second set of tests, the

substitution concerned the receptive fields of the first two units

(Figure 11, white bars). Also in this case, the performance

of the robot was not as good as that obtained by the neural

controller developed in active condition.

The last analysis concerns how the evolved learning robots

sample the visual input in active and passive learning con-

ditions. The distribution of the entire set of snapshots (25

pixels) was projected onto the three dimensional space of the

first principal components. Figure 12 shows that the snapshots

taken in the active learning condition are distributed in more

structured manner than those taken in the passive learning
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Fig. 10. Performance with lesioned receptive fields. Dark gray bar shows
the performance with five intact receptive fields, whereas light gray bar with
three lesioned neurons. The fitness values are averaged over ten tests. The
performances with all of RFp1−4 were improved by lesioning units 3, 4, and
5.
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Fig. 11. Performance in the substitution test. Fitness value of the robot was
computed when units 3, 4, and 5 of RFp1−4 were substituted by those of
RFa (gray bars) and when units 1 and 2 of RFp1−4 were substituted by
those of RFa (white bars). Black bar shows the performance with five intact
receptive fields for the sake of comparison. Horizontal dashed line represents
the fitness value of the robot with intact RFa. The fitness values are averaged
over ten tests.

condition because the constraints on body movement did not

allow the robot to freely sample the images. Indeed, the

distribution of snapshots taken in the passive condition is

close to that of uniformly sampled images, that was previously

shown in Floreano et al. (2005). The distributions obtained in

the other three passive conditions, RFp1, RFp3, and RFp4,

are similar to that of RFp2.

V. DISCUSSION

Using an experimental setup similar to that used for kittens

(Held and Hein, 1963), we have explored the correlation be-

tween receptive field formation and behavior in two conditions.

The present results suggest that constraints on body movement

disturb the development of “healthy” visual receptive fields.

Although we can not see any significant difference in the

level of receptive fields themselves, they caused a significant

difference in behavior. Furthermore we have shown that the

coherence of receptive fields developed in active condition
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Fig. 12. Distribution of snapshots taken during active and passive learning
conditions. These plots are projected onto the three dimensional space of the
first three principal components. The number of plots in each figure is 400
(=maximum sensory motor cycles per trial). The distributions obtained in the
remaining three passive conditions, RFp1, RFp3 and RFp4, are similar to
that of RFp2.

plays an important role in the good performance of the robot.

Although the arrangement and relative importance of the

receptive fields described depend on the specific learning rule

used in these experiments, the results suggest that during

passive movement the developing system incorporates sensory

stimulation that is not functional for normal behavior. In other

words, freely behaving systems select a subset of stimuli that

coherently support the generation of behavior itself.

One would say that we could conceivably have evolved a

robot that would also produce correct behavior under condi-

tions p1-4 if these were presented during evolution, and thus

we have only demonstrated that the robot is not good at doing

something which it was not evolved to do. This criticism would

miss the point of the study which is to demonstrate how motor

activity affects development. Evolution is free to pick up a con-

venient pattern of motor activity that facilitates development.

If it were easier to ignore motor activity and perform some sort

of non-historical image analysis on every visual input so as

to extract the necessary information for navigation, evolution

would have very likely found that solution or something close,

but that is not the case.

It would be good to come back here to the bigger picture

that was set at the start of the article: the point that not

only visually-guided behavior depends non-trivially on motor

activity (active vision) but that its development relies on it as

well. This thesis has a stronger and a weaker version. The

weaker says: to the extent that sensory input is dependent on

movement, and the development of receptive fields dependent

on sensory input, then this development also depends on move-

ment. If you change the pattern of allowed movements, you

will affect development. This is what the present experiments

have shown in this article.

However there is a stronger version that includes the former

but adds the following: there is also a direct dependence of

development on how movement is registered by the system,

i.e. on proprioceptive activity, or efferent copies or similar

mechanisms for distinguishing self-generated movement from

non-self-generated movement. For this stronger version, even

if one manages to replicate the precise sensory input (thus re-

moving this indirect dependence on movement), development

will also be impaired, because it lacks another fundamental

component, the information of how visual input and movement

(through proprioception) are coordinated.

This stronger version is what the original kittens’ exper-

iment demonstrated in Held and Hein (1963). If we accept

that the device effectively “copies” the active kitten’s sensory

input into the passive kitten’s, then the latter’s lack of visual

development can only be attributed to its lack of the temporal

correlation–and the resulting association–between a measure

of actual body movement and the corresponding propriocep-

tive input (barring other factors such as stress, etc). This

situation is not quite the same as the one currently reproduced

with the robot as there is only camera proprioception. To

support this stronger version of the argument, one should

carry out further experiments with an extended sensory system

measuring actual body movement by means of accelerometers

or gyroscope.

VI. CONCLUSIONS

We carried out a set of robotic experiments to study the

contribution of active body movement to the development of

the visual system in the mobile robot. Although the present

experimental setup is not exactly same as that shown in Held

and Hein (1963), the essence of the original experiment was

reproduced in an artificial manner by means of physics-based

simulation. A Hebbian learning rule performing PCA was

implemented for the development of visual receptive fields

in the robot.

We have firstly shown that the receptive fields and per-

formance of the robot developed in active condition are

significantly different from those developed in four passive

conditions. An explanation of this difference–the coherence

of receptive fields developed in active condition plays an

important role in the good performance of the robot–is given

support by a set of analyses performed on the neural controller

and robot behavior.



Our current work aims at extending the analysis to the

integration of different information modalities. A new set of

experiments where the additional sensory information of actual

body movement is available for the neural network of the

mobile robot may allow us to explore the role of each modality

or inter-modal correlations on the development of the visual

system.
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APPENDIX

The connections between visual neurons and hidden neurons

are randomly initialized in the range [−
√

3/25,
√

3/25] at the

beginning of the life of each individual. We derive the value
√

3/25 from the fact that the number of pixels is 25 and

that synaptic weights are randomly initialized with uniform

probability distribution.

We have n synapses that we want to initialize randomly (i.e.

with uniform probability distribution) in the range [−A, A].
We would like to choose the value of A in order to meet

the requirement ||w|| = 1, but of course we can do it only

probabilistically. Hence, we ask the expected value of ||w|| to

meet the requirement, that is, E[||w||2] = 1.

Since the probability distribution is uniform in the range

[−A, A], the value of the probability density function is a

constant 1/(2A) in the interval, and zero outside. It follows

that E[w2
1 + w2

2 + ... + w2
n] = n

∫ A

−A
w2

2A
dw. By evaluating

the definite integral we obtain E[w2
1 + w2

2 + ... + w2
n] =

(n/3) × A2. The condition E[||w||2] = 1 can thus be written

as (n/3)×A2 = 1, from which the result A =
√

3/n follows

(in our case n = 25).
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