Evolution/Development of Action and Language

Stefano Nolfi
Laboratory of Autonomous Robotics and Artificial Life
Institute of Cognitive Sciences and Technologies, CNR
Roma, Italy
http://laral.istc.cnr.it/nolfi/
stefano.nolfi@istc.cnr.it
Outline & Objectives

1. Theoretical background

2. How population of evolving robots can co-develop behavioral and communication skills
 - How signals and "meanings" emerge
 - How the development of action skill support the development of communication skills and vice versa

3. How robots can acquire early language comprehension capabilities
 - How robots can display compositional language/action skills
 - How language exposure and self-talk facilitate action development

4. Discussion and Conclusions
Theoretical Hypothesis

Behavior and cognition are complex adaptive systems characterized by emergent properties and by a multi-level and multi-scale organization.
Behaviour and cognition are dynamical processes that extend over time and result from a large number of robot/environmental interactions occurring at a fast time rate between the robot’s control system, body, and the physical and social environment.
Behavior and Cognition as Complex Multi-Level and Multi-Scale Dynamical Systems

(i) The interactions between lower-level processes (that extend for a limited time duration) give rise to higher-level processes (that extend for longer time spans)

(ii) higher-level processes later affect the lower-level processes from which they originate
Behavior and Cognition as Adaptive Systems

Systems with varying fine-grained characteristics in which variations are retained or discarded on the basis of their effects at the level of the overall behavior produced by the agent in interaction with the physical/social environment.

To adapt to variation of the task/environment

To synthesize functions emerging from the interactions of lower-level components among themselves and with the environment.
Evolution of behavioral and communication skills in groups of cooperating robots

Fitness Function: The group is reward with 1 point every time the robots are concurrently located in the two areas for the first time or after a switch

De Greef & Nolfi, 2010
Summary of the main evolutionary progresses

Multi-level formation, innovations, incrementality & complexification

New higher-level capacities emerge through the interactions between pre-existing skills or through new traits combined with skill re-use.

Innovations are enabled by the new adaptive opportunities created by the effects of agents’ behaviors and by the possibility to re-use existing capacity.

Old skills (assuming new functions) tend to be preserved thus leading to an incremental process.

Language and action integration and synergies between language and action development

Signals/meanings originate through the development (and are grounded in) behavioral skills.

Signals constitute one of the main drive enabling the development of new behavioral skills.

Fitness: The robot is rewarded for the ability to realize the goals of the experienced utterances.

<table>
<thead>
<tr>
<th></th>
<th>BLUE</th>
<th>RED</th>
<th>GREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGNORE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>TOUCH</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>MOVE</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Development of early language comprehension capabilities

INDICATE RED

TOUCH YELLOW

GRASP RED

Ferrauto and Nolfi (2012)
Generalization in Comprehension and Action Production

By post-evaluating the robots at the end of the training process with observed that some of them display an ability to comprehend the two new utterances by displaying the corresponding appropriate behaviors.

Robots trained to produce related skills tend to lead to solutions based on multi-level organizations supporting skill re-combination and re-use.
Language exposure and self-talk facilitates action development

Significantly facilitates the capacity to acquire high-level behaviors (e.g. moving an object to a basked) by combining a set of lower-level behavior (reaching-object, grasping, reaching-target, releasing-object)
Discussion 1/2

An important challenge for scaling ER methods toward real-world applications concerns the development of agents displaying several integrated capacities and possibly able to expand their capacity repertoire overt time.

The multi-level organization of behavioral and cognitive skills:

- Enable generalization and compositionality at the level of behaviors
- Facilitate the development of new skills through competence re-use
- Support incremental processes leading to a progressive expansion of the agents’ capacities repertoire
Communication/language and action are two tightly integrated phenomena.

The interaction between adaptive agents and humans mediated by symbolic interactions can allow the former to develop richer and more complex capacities.
Acknowledgements

Joachim De Greeff

Gianluca Massera

Tomassino Ferrauto

Elio Tuci

Onofrio Gigliotta

Tobias Leugger

http://www.italkproject.org/
Cognitive Systems and Robotics

www.ecagents.org
Future and Emerging Technologies