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Ever since Cicero’s De Natura Deorum

ii.34., humans have been intrigued by

the origin and mechanisms underlying

complexity in nature. Darwin suggested

that adaptation and complexity could

evolve by natural selection acting suc-

cessively on numerous small, heritable

modifications. But is this enough? Here,

we describe selected studies of experi-

mental evolution with robots to illustrate

how the process of natural selection can

lead to the evolution of complex traits

such as adaptive behaviours. Just a few

hundred generations of selection are

sufficient to allow robots to evolve

collision-free movement, homing, so-

phisticated predator versus prey strate-

gies, coadaptation of brains and bodies,

cooperation, and even altruism. In all

cases this occurred via selection in robots

controlled by a simple neural network,

which mutated randomly.

Genes do not specify behaviours directly

but rather encode molecular products that

lead to the development of brains and bodies

through which behaviour is expressed. An

important task is therefore to understand

how adaptive behaviours can evolve by the

mere process of natural selection acting on

genes that do not directly code for behav-

iours. A spectacular demonstration of the

power of natural selection comes from

experiments in the field of evolutionary

robotics [1,2], where scientists have conduct-

ed experimental evolution with robots.

Evolutionary robotics has also been advo-

cated as a method to automatically generate

control systems that are comparatively

simpler or more efficient than those engi-

neered with other design methods because

the space of solutions explored by evolution

can be larger and less constrained than that

explored by conventional engineering meth-

ods [3]. In this essay we will examine key

experiments that illustrate how, for example,

robots whose genes are translated into simple

neural networks can evolve the ability to

navigate, escape predators, coadapt brains

and body morphologies, and cooperate. We

present mostly—but not only—experimental

results performed in our laboratory, which

satisfy the following criteria. First, the

experiments were at least partly carried out

with real robots, allowing us to present a

video showing the behaviours of the evolved

robots. Second, the robot’s neural networks

had a simple architecture with no synaptic

plasticity, no ontogenetic development, and

no detailed modelling of ion channels and

spike transmission. Third, the genomes were

directly mapped into the neural network (i.e.,

no gene-to-gene interaction, time-dependent

dynamics, or ontogenetic plasticity). By

limiting our analysis to these studies we are

able to highlight the strength of the process of

Darwinian selection in comparable simple

systems exposed to different environmental

conditions. There have been numerous other

studies of experimental evolution performed

with computer simulations of behavioural

systems. Reviews of these studies can be

found in [4–6]. Furthermore, artificial evo-

lution has also been applied to disembodied

digital organisms living in computer ecosys-

tems, such as Tierra [7] and Avida [8], to

address questions related to gene interactions

[9], evolution of complexity [10], and

mutation rates [11,12].

The Principle of Selection in
Evolutionary Robotics

The first proposal that Darwinian selection

could generate efficient control systems can

be attributed to Alan Turing in the 1950s. He

suggested that intelligent machines capable of

adaptation and learning would be too difficult

to conceive by a human designer and could

instead be obtained by using an evolutionary

process with mutations and selective repro-

duction [13]. The development of computer

algorithms inspired by the process of natural

evolution followed shortly after [14–16], but

the first experiments on the evolution of

adaptive behaviours for autonomous robots

were done only in the early 1990s [17–19],

leading to the birth of the field of evolutionary

robotics [1,2].

The general idea of evolutionary robotics

(Figure 1 and Video S1) is to create a

population with different genomes, each

defining parameters of the control system of

a robot or of its morphology. The genome

is a sequence of characters whose transla-

tion into a phenotype can assume various

degrees of biological realism [20]. For

example, an artificial genome can describe

the strength of synaptic connections of an

artificial neural network that determines

the behaviour of the robot. The input

neurons of the neural network are activated

by the robot’s sensors, and the output

neurons control the motors of the robot.

Within a population, each individual has a

different genome describing a different

neural network (i.e., different connections

between neurons), thus resulting in specific

individual responses to sensory-motor in-

teractions with the environment. These

behavioural differences affect the robot’s

fitness, which is defined, for example, by

how fast and straight the robot moves or

how frequently it collides with obstacles. At

the beginning, robots have random values

for their genes, leading to completely

random behaviours. The process of Dar-

winian selection is then imitated by selec-

tively choosing the genomes of robots with
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highest fitness to produce a new generation

of robots. In this process, genomes are

paired (to allow recombination) and ran-

dom mutations (e.g., character substitution,

insertion, deletion, or duplication) are

applied with a given probability to the

new genomes. This process of evolution can

be repeated over many generations until a

stable behavioural strategy is established. In

some experiments this selective process has

been performed with real robots whereas in

other experiments physics-based simula-

tions [21] that included models of mass,

friction, gravity, accelerations, and colli-

sions have been used. Such simulations

allow one to conduct selection with a large

number of individuals over many genera-

tions. The evolved genomes can then be

implemented in real robots, which have

been shown to display the same behaviour

as observed in simulations for the experi-

ments described in this article.

Collision-Free Navigation

Darwinian selection has been used to

investigate whether small-wheeled robots

could evolve collision-free navigation, a

behaviour that requires appropriate pro-

cessing of sensory information and coor-

dinated activation of the motor system.

The experiments were conducted in a

looping maze (Figure 2, left) with a two-

wheeled robot equipped with eight dis-

tance sensors (six on one side and two on

the other side of the robot). The sensors

were connected to eight input neurons that

were connected to two output neurons,

which each controlled the direction and

speed of rotation of one of the wheels

(Text S1, section 1). The genome of the

robots consisted of a sequence of bits

encoding the connection weights between

input and output neurons. Mutations

allowed the strengths of connections

between neurons to change over genera-

tions. Experimental selection was conduct-

ed in three independent populations each

Figure 1. Major steps of Darwinian selection with robots. 1) The robots have a neural network with the strength of connections between
neurons determining their behaviour as a function of the information provided by the environment. 2) The fitness f of each robot (i.e., the
performance in the task assigned to them) is measured in the experimental setting using real robots or physics-based simulators. 3) The genomes of
robots with highest fitness are selected to form a new generation. 4) The selected genomes are paired to perform crossover and mutations. 5) The
new genomes are used to perform a new round of selection in the next generation.
doi:10.1371/journal.pbio.1000292.g001

Figure 2. Collision-free navigation. A) A Khepera robot tested in a looping maze. B) Trajectory of one of the robots with an evolved neural
controller. The segments represent the axis between the two wheels plotted every 300 ms using an external tracking device.
doi:10.1371/journal.pbio.1000292.g002
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consisting of 80 individuals [18]. The

performance of each robot was evaluated

with a fitness function describing the

ability of the robot to efficiently move in

the maze.

Over the first few generations, the robots

rapidly improved their ability to move

without collisions in the looping maze

and, within less than 100 generations, most

of them exhibited collision-free navigation

(Figure 2, right, and Video S2). Although

the fitness function did not specify in what

direction the robot should navigate (the

robots were perfectly circular and the

wheels could rotate in both directions),

the best evolved individuals across all

replicates moved in the direction corre-

sponding to the side with the highest

number of sensors. This was because

individuals initially moving in the direction

with fewer sensors had higher probability of

colliding into corners and thus had lower

probability of being selected for reproduc-

tion. Interestingly, the driving speed of the

best-evolved robots was approximately half

of the maximum possible speed and did not

increase even when the evolutionary ex-

periments were continued for another 100

generations. Additional experiments where

the speed was artificially increased revealed

that fast-moving robots had high rates of

collisions because the 300-ms refresh rate of

the sensors did not allow them to detect

walls sufficiently in advance at high speed.

Thus, the robots evolved to move at

intermediate speeds because of their limited

neural and sensory abilities. More general-

ly, these experiments reveal that a process

of selective reproduction with random

mutations on genes that encode the wiring

of neural networks can generate coordinat-

ed navigation behaviour that takes into

account not only the environmental char-

acteristics, but also the morphological and

mechanical properties of the robots.

Homing

An evolutionary experiment with the

same robots was conducted to investigate

whether they could also evolve the ability

to find their way home, a process that has

been suggested to require the development

of internal representations of the environ-

ment [22–24]. To mimic a situation

selecting for homing ability, robots were

placed in a dark room with a small light

tower located behind their nest, which

consisted of a black patch on the floor in

one of the corners of a square arena

(Figure 3, left). Robots initially had a fully

charged (simulated) battery that dis-

charged linearly over 50 sensory-motor

cycles. When a robot passed over the black

patch of the nest, its battery was instanta-

neously recharged. As the experiment

lasted 150 sensory-motor cycles, a robot

had to return at least twice to the nest to

be able to continue moving throughout the

whole experiment. In addition to the eight

distance sensors used in the collision-free

experiments, robots also had a floor-colour

sensor, enabling them to determine wheth-

er they were in the nest; two light sensors

on their sides, allowing them to locate the

light tower over their nest (but not

sufficient to tell precisely the distance);

and a sensor giving information on the

battery level (Text S1, section 2).

Experimental selection was conducted

in a population of 100 individuals [25]. A

robot’s fitness was proportional to the

average rotational speed of the two wheels

and distance from the walls (Text S1,

section 2). After 200 generations of

selection with real robots, the best indi-

viduals performed wide explorations of the

arena, returning to the nest only when

their batteries had approximately 10%

residual energy (Video S3). They stayed in

the nest only for the time necessary to turn

and exit. This was because being in the

nest only permitted small fitness increase

as the robots’ distance to the walls was

very small.

The ability of robots to arrive to the nest

when their batteries reached a very low level

was mediated by the evolution of a neuronal

representation of the environment that

Figure 3. Evolution of homing. A) Experimental setup with a Khepera robot moving in the direction of the nest (recharging station), located in
front of the light tower. B) Trajectory of an evolved robot after 200 generations. The trajectory starts in the lower left corner and ends within the
recharging nest in the top left corner. Each point corresponds to the recording of the robot’s position using an external tracking device. The arena
and the recharging nest were plotted by manually positioning the robot along their contours.
doi:10.1371/journal.pbio.1000292.g003
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enabled them to combine information on

their location and battery level to precisely

time the homing behaviour (Text S1, section

2). The process of neural representation was

reminiscent of ‘‘place cells’’ [26] and of

‘‘head-oriented cells’’ [27] in the rat hippo-

campus, suggesting that artificial organisms

may evolve functionally similar internal

representations and behavioural strategies

as real organisms to solve tasks requiring the

simultaneous processing of different sources

of information.

Predator–Prey Coevolution

Experimental evolution with robots has

also been used to study the coevolutionary

processes between a population of preda-

tor robots and a population of prey robots

[28,29]. Both the predator and prey robots

(Figure 4, top) were equipped with eight

distance sensors (six on one side and two

on the other side). However, prey and

predator robots differed in three ways.

First, the maximum speed of the prey was

twice that of predator. Second, the

predator had an additional vision system

with a 36u field of view. Third, the prey

had a black stick that could be visually

perceived by the predator (Text S1,

section 3). These differences allowed

predators to detect the prey at a distance

of up to 100 cm, whereas prey could only

detect predators when they were less than

0.5 cm away, but the prey could outrun

the predator.

One prey and one predator were

placed in pairs in square arenas with

the fitness of the predator being inversely

proportional to the time it took to catch

(i.e., touch) the prey while that of the

prey was proportional to the time it

managed to avoid being caught by the

predator. Each predator robot was indi-

vidually tested during two minutes

against the best prey of each of the

previous five generations, and similarly

each prey against the five best predators.

Starting with populations of 80 predators

and 80 prey, each independently tested

in one-to-one tournaments, ten indepen-

dent replicates of 100 generations were

carried out in physics-based computer

simulations and three replicates of 25

generations were conducted with real

robots [30].

Both the simulation and real robot

experiments led to the generation of, and

cycling through, a set of different pursuit

and evasion strategies (Video S4). The

cycle observed in one of the simulation

replicates is illustrated in Figure 4. Dur-

ing the first generations, most predator

and prey robots displayed an uncoordi-

nated behaviour, turning on the spot

(Figure 4, box 1). After a few generations,

the prey developed fast motion in the

environment whereas the predators visu-

ally tracked them so as to intercept their

trajectories (Figure 4, box 2). Some

generations later, the predators became

so efficient in catching the prey that they

lost the ability to detect and avoid walls

(this was due to weak selection pressure

for wall avoidance because the prey was

almost always caught before the predator

would hit a wall) (Figure 4, box 3).

Subsequently, the prey evolved a new

strategy that consisted of waiting for the

predator and moving backward when it

approached (Figure 4, box 4), thus

avoiding being caught. However, this

evasion strategy was not perfect because

the prey could not detect the predator

when approached from the sides without

sensors. A few generations later, the prey

displayed a variation of an earlier strategy

consisting of coasting the walls at maxi-

mum speed. At this point, the predators

evolved a ‘‘spider’’ strategy consisting of

backing against one of the walls and

waiting for the fast-moving prey, whose

sensors could not detect the predator

sufficiently, early to avoid it because its

body reflected less infrared light than the

white walls (Figure 4, box 5). After some

more generations, the prey displayed a

novel variation of the wait-and-avoid

strategy where it quickly rotated in place,

which reduced the probability of being

approached from the sides without sen-

sors. As soon as it detected the predator, it

moved backward while facing it with the

side having the highest number of sensors

(Figure 4, box 6). Overall, these experi-

ments revealed that a large variety of

sophisticated behavioural strategies could

evolve, but none of them were stable over

time because of the coevolutionary dy-

namics. A similar pattern seems to occur

in natural systems where each party in a

coevolutionary relationship exerts selec-

tive pressure on the other, thereby

affecting each other’s evolution and

leading to a constant evolution of strate-

gies and counterstrategies between par-

ties [31,32].

Figure 4. Coevolution of predator and prey robots. A) The predator robot (right) facing the
prey robot (left). B) Six examples of pursuit and evasion strategies that evolved over the 100
generations of selection in one of the replicates (see main text for description). The position of
the prey at the end of the trial is indicated by the empty disk and that of the predator by the
black disk (the lines in the disks correspond to the frontal directions).
doi:10.1371/journal.pbio.1000292.g004
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Joint Evolution of Brains and
Body Morphologies

Experimental evolution has also been

used to coevolve artificial brains and

morphologies of simulated robots. In a

pioneering study, Karl Sims used a

competitive scenario where the fitness of

two opponent robots was proportional to

their ability to gain control of a cube

placed in the centre of an arena [33]. The

evolutionary experiments were carried out

solely in physics-based simulations. The

genome of each robot consisted of two

chromosomes, one encoding the topology

of a neural network and the other

encoding the shape of a body composed

of rigid blocks linked by controllable

articulations. This led to the coevolution

of different types of robots capable of

moving towards the cube and preventing

access to its opponent. For example, some

robots consisted of a cubic block with two

articulated, arm-like structures, which

were used for moving on the ground and

holding the cube. Other robots were

composed of only two articulated worm-

like segments where one segment was so

large and heavy that, once placed over the

cube, it prevented the opponent from

displacing it.

The idea of fully evolvable robot

hardware was taken on by Lipson and

Pollack [34], who applied Darwinian

selection to simulated electromechanical

systems. As in Sims’ experiments, the

genome of the evolving individuals speci-

fied the morphology of the robot body and

of the neural network. The robot bodies

consisted of simple building blocks, such as

bars of variable lengths, joints, and linear

actuators. Bars could be coupled with

linear actuators that changed their length

and were connected together through ball

joints to form arbitrary truss structures

with the possibility of both rigid and

articulated substructures. The movements

of the linear actuators were controlled by

the activations of neurons, whose connec-

tions to other neurons and to the linear

actuators were specified along with the

body components in the evolving genomes

(Text S1, section 4). The fitness of a robot

was proportional to the distance it moved

over a flat surface. After 300 generations

of selection with physics-based simula-

tions, the individuals with highest fitness

were fabricated robotically using rapid

manufacturing technology (plastic extru-

sion 3-D printing) and tested in the real

world (Video S5). An example of such a

robot capable of fast locomotion is shown

in Figure 5. Taken as a whole, these

experiments revealed how the coevolution

between brain and body morphologies can

produce various types of adaptive behav-

iour and morphologies.

Evolution of Cooperation and
Altruism

Experimental evolution was also used to

investigate whether robots could evolve

cooperative and altruistic behaviour and,

if so, under what conditions. Cooperation

is defined as an act increasing both the

direct fitness of the individual giving help

and the fitness of the individual receiving

help; by contrast, altruism reduces the

direct fitness of the individual performing

the helping act [35,36]. The experimental

setup consisted of a foraging situation in a

square arena containing ten sugar cube-

sized wheeled robots, small tokens that a

single robot could push, and large tokens

requiring at least two robots to be pushed

(Figure 6). The robots had five infrared

distance sensors, four of them sensing

objects within a 3-cm range and a fifth,

which was placed higher, having a 6-cm

range. These sensors allowed robots to

locate the tokens and distinguish them

from robots. Robots were also equipped

with two vision sensors to perceive the

colours of the walls (Text S1, section 5).

Their fitness was proportional to the

number of tokens successfully pushed

within a 4-cm zone along a white wall

(the three other walls of the arena were

black). A large token successfully pushed

along the white wall increased the fitness

of all robots within a group (10 robots per

group) by 1 fitness unit, while a small

token successfully pushed increased the

fitness (also by 1 unit) of only the robot

that pushed it. The fitness of individual

robots was measured in populations con-

taining 100 groups of 10 robots each.

In one experimental condition, the

arena contained only large tokens, and

the only way for robots to increase their

fitness was to cooperate in pushing them

[37]. Accordingly, robots readily evolved

the ability to cooperatively push large

tokens towards the white wall in all 20

evolutionary replicates that were conduct-

ed. However, when the arena contained

both large and small tokens, the behaviour

of robots was influenced by the group kin

structure. In groups of unrelated robots

(i.e., robots whose genomes where not

more similar within than between groups),

robots invariably specialised in pushing the

small objects, which was the most efficient

strategy to maximise their own individual

fitness them (i.e., large tokens provided an

equal direct payoff as a small token but

were more difficult to successfully push).

By contrast, the presence of related robots

within groups allowed the evolution of

altruism. When groups were formed of

‘‘clonal’’ robots all having the same

genome, individuals primarily pushed the

large tokens even though it was costly, in

terms of individual fitness, for the robots

pushing (Video S6).

Similar results were obtained in exper-

iments where groups of light-emitting,

foraging robots could communicate the

position of a food source at a cost to

themselves because of the resulting in-

creased competition near food. In these

experiments, robots again readily evolved

costly communication when they were

genetically related, but altruistic commu-

nication never evolved in groups of

unrelated robots when selection operated

at the individual level [38,39].

Figure 5. Example of an evolved ‘‘creature’’ created by autonomous design and
fabrication process. (Image: Hod Lipson).
doi:10.1371/journal.pbio.1000292.g005
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These experiments are interesting in

two ways. First, they demonstrate that the

same general rules apply for experimental

evolution of robots and real organisms.

Theory predicts that altruism, defined as

an act of helping that decreases the direct

fitness of the individual performing it,

should only evolve among related individ-

uals, and this is also what has been found

in a wide range of organisms, ranging

from bacteria to social insects and social

vertebrates (e.g., [40–45]). Second, it

demonstrates that cooperation and altru-

ism can evolve even in organisms with

simple cognitive abilities (in both the token

pushing and communication experiments,

robots had neural network controllers

consisting of less than 15 neurons).

Conclusions
These examples of experimental evolu-

tion with robots verify the power of

evolution by mutation, recombination, and

natural selection. In all cases, robots initially

exhibited completely uncoordinated behav-

iour because their genomes had random

values. However, a few hundreds of gener-

ations of random mutations and selective

reproduction were sufficient to promote the

evolution of efficient behaviours in a wide

range of environmental conditions. The

ability of robots to orientate, escape pred-

ators, and even cooperate is particularly

remarkable given that they had deliberately

simple genotypes directly mapped into the

connection weights of neural networks

comprising only a few dozen neurons.

So far, evolutionary robotic experiments

have been conducted mostly by computer

scientists and engineers (e.g., [17,46–56]).

Their primary interest has been to exploit

the power of artificial evolution to auto-

matically generate novel or better control

systems and body shapes for specific

problems. For example, the method of

evolutionary robotics described in the

context of cooperative behaviour has been

successfully used to generate the control

systems of a swarm of micro aerial vehicles

that must locate rescuers and spread so as

to establish a radio communication net-

work based uniquely on signal strength of

the rescuer mobile phones and of the robot

emitters, a problem for which existing

engineering solutions require the use of

absolute geo-localisation information pro-

vided by GPS signals [57].

A major issue in evolutionary robotics is

that agents may use idiosyncratic features

of the environment in which they are

selected to increase performance, hence

leading to a major fitness drop in new

environments where these features are

lacking. A similar problem arises when

the evolutionary process takes place in

simulations failing to capture relevant

physical aspects of the environment. In

this case, the evolved individuals do not

operate well in the real world [58,59].

Computer scientists and engineers have

come up with various solutions to this

problem (for a recent review, see [4]). One

consists of measuring the fitness of evolv-

ing individuals in several environments

that vary along relevant dimensions (e.g.,

lighting conditions or ground texture).

Another consists of incorporating noise in

features of the simulation model (e.g.,

elasticity of joints or the physical interac-

tions that occur during collisions) that may

not faithfully reflect the real world. A third

consists of coevolving the robot and the

key parameters of the simulation model

and periodically testing the evolved con-

trol system with real robots to improve the

estimate of the fitness of the robot and

simulator [53]. Finally, a solution that may

also be relevant from a biological perspec-

tive consists of adding ontogenetic plastic-

ity to the evolving individuals so that they

can adapt to environmental modifications

arising during their lifetime [60].

It is only very recently that biologists

and cognitive scientists have become

interested in evolutionary robotics, realis-

ing that it provides a powerful means to

study how phenotypes can be shaped by

natural selection and address questions

that are difficult to address with real

organisms. Current topics of biologically

motivated research in evolutionary robot-

ics include the role of ontogenetic devel-

opment (e.g., [61]), the principles of neural

control of highly dynamic and elastic body

morphologies such as passive robotic

walkers (e.g., [62,63]), the functional role

of morphology in coevolving bodies and

brains [64], the role of active perception as

a mean to structure and simplify sensory

information in behaving organisms

[65,66], and the effects of synaptic plas-

Figure 6. Evolution of cooperative foraging. A) Foraging arena containing ten Alice micro-robots (black squares with arrows) and small and
large tokens that robots had to push towards the dashed area near the white wall (the other three walls were painted black). B) Experiment with real
robots.
doi:10.1371/journal.pbio.1000292.g006
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ticity [60,67,68] and neuromodulation

[69] on organisms evolving in rapidly

changing and partially unpredictable en-

vironments (i.e., under situations where

individuals benefit to change behaviour

over time). In particular, the incorporation

of adaptive mechanisms during ontogeny

mediated by phenotypic plasticity and

learning (e.g., [70]) provides promising

avenues for the study of processes operat-

ing at different spatial and temporal scales.

In comparison to theoretical and numer-

ical models of biological phenomena, the

embodiment and behavioural features of

robot models can result in stronger testing

of hypotheses and in higher predictive power

[71–73]. The use of real robot features are

particularly useful in an evolutionary per-

spective where behaviour and ensuing com-

plex physical interactions can significantly

affect the interaction with the environment

and performance. Therefore, evolutionary

robotics also offers new opportunities to

address issues such as sexual selection,

division of labour, speciation, and, in general,

the open-ended evolution of diversity and

complexity in behavioural systems. Interdis-

ciplinary collaborations among engineers,

evolutionary biologists, neuroscientists, and

molecular biologists should prove fruitful to

investigate important issues on the principles

that mediate the evolution of adaptive

behaviour of organisms that cannot be

readily studied with standard methods.

Supporting Information

Text S1 Supplementary methods.
Found at: doi:10.1371/journal.pbio.

1000292.s001 (6.50 MB DOC)

Video S1 Method for evolving the
neural network of a robot. Valid gene

sequences are extracted (magnifying lens)

from a binary string representing the genome

of the robot. Those genes are translated into

neurons of different type (colour) according to

the genetic specifications, such as sensory,

motor, excitatory, or inhibitory neurons. The

corresponding neural network is connected to

the sensors and motors of the robot and the

resulting behaviour of the robot is measured

according to the fitness function. The

genomes of the individuals that had the worst

performance are discarded from the popula-

tion (symbolically thrown in a dustbin)

whereas the genomes of the best individuals

are paired and crossed over with small

random mutations to generate new offspring

(the process of selective reproduction is

symbolically shown to occur in a ‘‘mother

robot’’). After several generations of selective

reproductions with mutations, robots display

better or novel behaviours.

Found at: doi:10.1371/journal.pbio.

1000292.s002 (7.82 MB MOV)

Video S2 Evolution of collision-free
navigation. In the initial generations,

robots can hardly avoid walls (one robot

even approaches objects). After 50 gener-

ations, robots can navigate around the

looping maze without hitting the walls.

Found at: doi:10.1371/journal.pbio.

1000292.s003 (8.15 MB MOV)

Video S3 Evolved ‘‘Khepera’’ robot
performing exploration and homing
for battery recharge. The robot enters

the recharging area approximately 2

seconds before full battery discharge.

Found at: doi:10.1371/journal.pbio.

1000292.s004 (9.23 MB MPG)

Video S4 Coevolved predator and
prey robots engaged in a tourna-
ment. After locating and moving to-

wards the prey, the predator cannot reach

it because the prey can perceive it with

the rear distance sensors and moves

faster.

Found at: doi:10.1371/journal.pbio.

1000292.s005 (1.89 MB MOV)

Video S5 Coevolution of body and
brain in a robotic machine. Please

switch the audio on to listen to the com-

mentary. Video courtesy of Hod Lipson, also

available from http://www.mae.cornell.edu/

Lipson/.

Found at: doi:10.1371/journal.pbio.

1000292.s006 (4.97 MB MOV)

Video S6 Evolution of altruistic
cooperation in a team of clonal
‘‘Alice’’ robots. In the initial genera-

tion, the robots can hardly perform

coordinated navigation. After 240 genera-

tions of Darwinian selection, most robots

search for large food tokens and cooperate

to push them towards the region of the

arena under the white wall.

Found at: doi:10.1371/journal.pbio.

1000292.s007 (10.21 MB MPG)
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