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Abstract— Environments with varying reward contingencies
constitute a challenge to many living creatures. In such con-
ditions, animals capable of adaptation and learning derive
an advantage. Recent studies suggest that neuromodulatory
dynamics are a key factor in regulating learning and adaptivity
when reward conditions are subject to variability. In biological
neural networks, specific circuits generate modulatory signals,
particularly in situations that involve learning cues such as a
reward or novel stimuli. Modulatory signals are then broadcast
and applied onto target synapses to activate or regulate synaptic
plasticity.

Artificial neural models that include modulatory dynamics
could prove their potential in uncertain environments when
online learning is required. However, a topology that synthesises
and delivers modulatory signals to target synapses must be
devised. So far, only handcrafted architectures of such kind have
been attempted. Here we show that modulatory topologies can
be designed autonomously by artificial evolution and achieve
superior learning capabilities than traditional fixed-weight or
Hebbian networks. In our experiments, we show that simulated
bees autonomously evolved a modulatory network to maximise
the reward in a reinforcement learning-like environment.

I. INTRODUCTION

Neuromodulation in biological neural networks has been
recognised to be a key factor in network dynamics. Exper-
imental evidence shows that neuromodulation plays an im-
portant role in several neural substrates, from the invertebrate
Aplysia to the human brain [1], [2].

Neuromodulation exerts a regulatory action on synaptic
plasticity, suggesting a close relation with important func-
tions such as memory, learning and adaptivity. The central
role of these functions in neuroscience has brought consid-
erable focus to the study of neuromodulation in biological
systems [3] and to the formulation of computational models
[4].

Studies on synaptic plasticity show that the well known
homosynaptic Hebbian rule is not the only mechanism that
leads to synaptic growth. Another relevant factor is the
concentration of neuromodulators at the synapse level that
seems determinant in the growth and stability of synaptic
connections. In this case, plasticity is named heterosynaptic
because it involves the activity of a third modulatory neuron.
Figure 1 describes graphically the difference between homo-
and heterosynaptic plasticity.
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Several studies reviewed in [2] indicate that the pairing
of pre- and postsynaptic activity with a modulatory signal
leads to the activation of transcription factors at the synapse
level, which in turn cause a permanent growth of the synaptic
contact. This growth is referred as L-LTP (Late phase -
Long Term Potentiation) because of the long decay time of
the synaptic strength. L-LTP induced by neuromodulation
is a cause of synaptic stability and, therefore, a potential
candidate to explain memory functions involving neural
wiring. Hence, modulatory systems seem to assume the
function of learning switches that project connections to
target synapses, instructing distinct neural areas to acquire
input/output correlation at given times.

Although the micro-level synaptic effects of neuromod-
ulation are topic of many studies, other important findings
relate neuromodulation with behavioural phenomena in an-
imals and humans. The implication of dopamine and other
neuromodulators in learning, decision making and memory
functions in the brain is currently an active research field [5],
[6]. A significant experiment described in [7] shows relations
in the acquisition of new tasks with dopamine release in
monkeys’ brains. Following studies relate dopamine with
prediction errors in reinforcement learning-like environments
[8], [9], [10]. This suggests a role of neuromodulation in
temporal difference models of animal learning [11] and their
similarities with Temporal Difference (TD) in reinforcement
learning theory [12].

Computational models of modulatory dynamics in neural
systems have been proposed with the aim of understanding
the neural substrate underlying reinforcement learning-like
behaviour [4], [13], [14], [15], [16], [17], [18], [19]. A
substantial issue when devising a model is the design of
sources and pathways of neuromodulation, i.e. how the
modulatory signals are generated and which neural areas are
targeted. As discussed in [17], reinforcement learning, actor-
critic and reward-based neural models are loosely imple-
mented after biological neural architectures. Although recent
progress in neuroscience and neuroethology has made pos-
sible to identify modulatory centres and pathways in neural
systems, a precise mapping and understanding is far from
being achieved. Therefore, most of computational models
of neuromodulation start from given assumptions regarding
possible sources and pathways of modulatory signals. In
[13] and [15], a simple neural architecture was devised to
implement heterosynaptic plasticity for the neurocontroller
of a simulated foraging bee in an uncertain environment.
Although the genetic algorithm used in [15] was capable of
enabling or disabling connections between inputs and the

2471

1-4244-1340-0/07$25.00 c©2007 IEEE



output neuron, the neural architecture was constrained to the
input neurons and one output neuron. Generally speaking,
neuromodulatory architectures that have been designed so
far are handcrafted and tentative, and do not guarantee to
exploit the full potential of modulatory dynamics in neural
networks.

In this paper, we propose a method to design autonomously
neural network topologies with neuromodulation, and explore
their capabilities without the constraint of a predetermined
architecture. Our hypothesis is that, if neuromodulation in-
creases the computational power, neurocontrollers with such
characteristic would emerge autonomously in uncertain en-
vironments where learning and adaptivity give an advantage.

To test this hypothesis, it is essential to provide artificial
evolution with an algorithm capable of feature selection and
evolving neural topologies. Analog Genetic Encoding (AGE)
[20], [21] is a method to encode neural topologies that
provides such functionality. AGE has been proved efficient
when combined with a genetic algorithm for the evolution
of different kind of networks, namely neural networks [22],
electronic circuits [20], [21] and Gene Regulatory Networks
[23]. Here, AGE is applied to the evolutionary search of
network topologies with neuromodulation.

The chosen problem is a foraging task described in [13],
[15]. The changing reward conditions necessitate a contin-
uous update of the strategy to maximise the food intake.
Therefore, optimal strategies in this reinforcement learning-
like variable environment require online learning capabilities.
The neuromodulatory architecture devised in [13], [15] has
proved to be beneficial to the task, allowing artificial bees
to associate a flower-colour to the current high rewarding
flower. In this paper, instead of assuming a predetermined
architecture, we carry out an evolutionary search of neuro-
topologies, modulatory and input features, and learning rules.
The results are qualitatively compared to those in [15]: the
performance of controllers considerably outperform that of
the previous handcrafted architecture. Moreover, one single
neurocontroller can cope with a more complex, extended
scenario than the one in [15]. An additional comparison is
also made with evolutionary runs where neuromodulation
was not allowed.

The analysis of the networks shows the effective modu-
latory dynamics that emerged from evolution and enabled
to solve the foraging problem. Thus, the method proved
its validity in the search of neural network topologies with
neuromodulation.

The rest of the paper is organised as follows. Section II
describes the problem of evolving topologies with neuromod-
ulation and the proposed method using AGE and artificial
evolution. Section III describes in detail the simulated bee
and the artificial environment. Implementation details are
listed in section IV. The results are illustrated in section V
with emphasis on the evolved behaviour and an insight on
the neuromodulatory dynamics. The paper ends with final
remarks in the conclusions.

(a)

(b)

Fig. 1. (a) Homosynaptic mechanism: the connection strength is updated
as function of pre- and postsynaptic activity only. (b) Heterosynaptic
mechanisms: the connection growth is mediated by neuromodulation, i.e. the
amount of modulatory signal determines the response to Hebbian plasticity.
The dots surrounding the synapse represent the concentration of neuro-
modulatory chemicals released by the modulatory neuron. Neuromodulators
such as acetylcholine (ACh), norepinephrine (NE), serotonin (5-HT) and
dopamine (DA) have been identified.

II. ARTIFICIAL EVOLUTION OF NEUROMODULATION

In the introduction we have underlined the research
problem regarding the design of topology when devising
neuromodulatory network models. We proposed to employ
an evolutionary approach to evolve such topologies. To
investigate the autonomous emergence of topologies with
neuromodulation, an algorithm should be capable of 1) en-
coding two types of neurons, traditional excitatory/inhibitory
neurons and modulatory neurons; 2) encoding weights and
network topology among an arbitrary number of standard
and modulatory neurons. In addition, because modulation is
applied to regulate some form of synaptic plasticity, fixed
or evolved plasticity rules need to be available to the neural
network.

The design and the evolutionary search of network topolo-
gies have been the focus of research for many years [24]. Re-
cently, different aspects on the evolution of neural networks
have been taken into consideration to formulate advanced
algorithms for the search of both topology and weights.
At least two algorithms, NeuroEvolution of Augmenting
Topologies (NEAT) [25] and neuroevolution with Analog Ge-
netic Encoding (AGE) [20], have been established as efficient
methods for evolving network topologies and weights, and
their performance has been assessed with benchmarks and
applications.

AGE was chosen for the topology search in this experi-
ment. Following, an overview of the algorithm is given.

A. Analog Genetic Encoding (AGE)

Because AGE is an established method and it is used here
exclusively as a tool, we will provide a concise description
for the general understanding and the necessary information
for reproducing the algorithm. For a further insight of AGE,
we recommend the cited literature [20], [21], [22], [23].
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Fig. 2. Process of genotype-phenotype mapping in AGE for a neural
network. The part of the genome shown here encodes two neurons signalled
by the token NE. The genome is scanned sequentially and device tokens
(NE) are decoded into network nodes, more specifically neurons in this
example. The process is marked by dotted arrows. Terminal sequences
(arbitrary sequences of characters that precede the terminal token TE) of
each node are aligned (two at a time) to derive a measure of similarity
between two sequences. This measure of similarity, also called alignment
score, is mapped into the connection weight between the nodes to which
the sequences belong. For example, when the input sequence of a device
is aligned with the output sequence of the same device (at the right of the
figure), the resulting weight represents the recurrent self connection. In this
particular example, the first terminal sequence after the device token NE is
the input, the second terminal sequence is the output. In general, according
the user specifications, a device can have more inputs or outputs.

AGE represents an analog network by means of an artifi-
cial genome where nucleotides are expressed by the charac-
ters of an alphabet Ω, for instance the letters A-Z. Nodes in
the network, also called devices, are encoded by particular
sequences of characters, the tokens. Each token signals the
presence of a device that is decoded into a network node
in the phenotype; different types of devices – representing
different kind of network nodes – can be present in the
genome. Figure 2 shows the genotype-phenotype mapping
process.

Each device has a certain number of inputs and outputs
that, in the case of neurons, represent dendrites and axon
projections. Inputs and outputs of devices are encoded with
terminal sequences, i.e. arbitrary sequences of characters that
follow device tokens (NE in the figure) and are limited
by a terminal token (TE). Once all the network nodes are
extracted, the connections among them is derived applying
the following procedure: the output terminal sequence of a
device is aligned with the input terminal sequences of all
other devices; each alignment produces an alignment score
– an index of similarity between the two terminals – that is
consequently mapped into a connection weight. The mapping
from alignment scores to network weights is done through a
quantisation process where alignment scores in a given range
are converted into a range of real-valued weights. Alignment
scores under a certain threshold result in no connection
between two nodes. Therefore, terminal sequences encode
implicitly the neural topology.

Different kinds of networks can be represented according
to the device specification given by the final user.

Fig. 3. Example of AGE phenotype when modulatory neurons (token
MO) are added to the network alongside standard neurons (token NE). The
projection from a modulatory neuron to a standard neuron is indicated by a
dashed circle around the postsynaptic neuron. For all synapses connecting
to the postsynaptic neuron, plasticity is regulated by the modulatory signal.

B. AGE and Settings for Neuromodulatory Topologies

For our purpose, two different devices were specified to
encode standard and modulatory neurons.

Figure 3 shows an example of a part of a phenotype
where two standard neurons and one modulatory neuron are
decoded from the genome, assuming NE and MO as device
tokens.

For the experiment in this paper, neurons have a discrete
time dynamic. The output Ol(t) of neuron l is equal to
2/[1+ exp (A(t − 1))] − 1 for standard neurons and 1/[1+
exp (A(t − 1) − 1)] for modulatory neurons, with Al(t) =
3 ·

∑
(wjl · Oj(t)), where wjl is the connection weight

from the standard neuron j to the neuron l. According to
these definitions, standard neurons have a sigmoid output in
the interval [-1,1], whereas modulatory neurons produce an
output in the interval [0,1] and have an implicit bias of -1.
It is important to note that this setting has the purpose of
having modulatory neurons that exert very low modulation
unless excited by positive signals.

Modulatory neurons that project on standard neurons do
not contribute to neuronal activity. The modulatory signal has
a regulatory function on the synaptic plasticity of the receiv-
ing neuron. The plasticity rule used by a neurocontroller is
evolved alongside the network. Given two standard neurons j
and l, an existing connection from j to l is updated according
to the following equation

Δwjl(t) = mo(t) · η ·

·[A · V (t)P (t) + B · V (t) + C · P (t) + D]

(1)

where mo(t) is the modulatory signal, η is a scaling
parameter, and the term between square brackets is the set
of plasticity rules. V (t) is the presynaptic value (output of
neuron j), P (t) the postsynaptic value (output of neuron
l), A, B, C, D are evolvable parameters that express the
coefficients of the plasticity rules. The modulatory signal
mo(t) perceived by the postsynaptic neuron (l) is the sum
of all modulatory signals delivered to that particular neuron.
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III. THE REINFORCEMENT LEARNING-LIKE PROBLEM

As outlined in the introduction, neuromodulation is con-
sidered a key feature for neural systems dealing with un-
certain environments, where associations between actions
and reward change over time. For this reason, an artificial
environment aimed to the study of neuromodulation should
include such characteristics.

Foraging tasks of bees and bumblebees are well known
problems that require learning and adaptivity. The flight
to flower fields for nectar collection is a risky activity:
predators determine a high mortality rate during foraging
missions. Therefore, bees need to maximise the nectar intake
by visiting preferably flowers that yield high quantities of
nectar. However, different flowers provide variable quantities
of nectar depending on the time of the day, season, weather
conditions and other variable environmental factors.

These conditions determine a reinforcement learning-like
environment where the nectar intake upon landing represents
a measure of reward. The type of flower, often discernible by
the colour, is a conditioned stimulus that becomes a predictor
of an expected reward. Hence, reward expectations determine
a strategy aimed to maximise the total reward over a certain
number of trials. Upon changes of reward contingencies,
high rewarding flowers turn into low rewarding, thus, reward
expectations are not fulfilled resulting in prediction errors.

To support this view, an identified interneuron in honey-
bees appears to deliver gustatory stimuli representing reward
values upon nectar collection [26]. This finding and following
studies [27], [28], [29] contribute to the explanation of
associative learning in the neural substrate of the honeybee.
A computational model that tries to reproduce the biological
evidence of reinforcement learning and neuromodulation is
described in [13]. Later, the same experimental setting was
used in [15] to optimise a neuromodulatory network by
means of a genetic algorithm. Here, we adopt the same
simulated bee and artificial uncertain environment.

A. The Simulated Bee

A bee flies in a simulated 3D space with a flower field
of 60 by 60 meters drawn on the ground. Two types of
flowers are represented on the field by blue and yellow 1-
meter square patches. The outside of the field and the sky
are represented by grey colour.

During its lifetime, the bee performs a number of flights
starting from a random height between 8 and 9 meters. The
bee flies downwards in a random direction at a speed of
0.5m/s. A single cyclopean eye (10-degree cone view centred
on the flying direction) captures the image seen by the bee.
The image is processed to obtain the percentages of blue,
yellow and grey colours that are fed into the neural controller.

For each time step (1 sec sampling time) the bee decides
whether to continue the flight in the current direction or to
change it to a new random heading. The activation value A(t)
of an output neuron determines the probability of changing
direction given by P(t) = [1 + exp(m · A(t) + b)]−1, where
m and b are evolvable parameters. Figure 4 shows a portion
of the 3D space where the flight is simulated.

Fig. 4. View on the flying 3D space and the simulated bee. Blue and yellow
flowers are represented by dark and light squares. The bee flies downwards
in any random direction and approaches the field under its view cone. The
dashed line shows a possible landing trajectory.

TABLE I

REWARDING POLICIES. P INDICATES THE PROBABILITY OF THE

REWARD.

Scenario
Nectar of the high reward-
ing flower

Nectar of the low reward-
ing flower

1 0.8μl 0.3μl

2 0.7μl
1.0μl with P=0.2
0.0μl with P=0.8

3
1.6μl with P=0.75
0.0μl with P=0.25

0.8μl with P=0.75
0.0μl with P=0.25

4
0.8μl with P=0.75
0.0μl with P=0.25

0.8μl with P=0.25
0.0μl with P=0.75

B. Scenarios

The two flowers, characterised by blue and yellow colours,
yield a certain amount of nectar that is provided to the bee
upon landing in the form of a reward input. Rewards can be
given on a deterministic or probabilistic basis.

Here we introduce four possible scenarios according to
four possible reward policies as in [15]. Scenario 1 provides
two deterministically rewarding flowers; scenario 2 has one
deterministically and one probabilistically rewarding flower;
scenario 3 and 4 have both probabilistically rewarding flow-
ers. Regardless of the reward policies, each scenario has a
high rewarding and a low rewarding flower, meaning that one
flower yields in average more nectar than the other. Table I
provides the numerical values of rewards in each of the four
scenarios.

An optimal strategy is required to associate a flower-
colour with the currently high rewarding flower. Note that
a deterministically rewarding flower provides a mean reward
that corresponds to the value received on the single trial,
whereas probabilistically rewarding flowers require more tri-
als to obtain an estimated average reward. As a consequence,
scenario 1 and 2 constitute an easier problem to solve than
scenario 3 and 4. The evolved bees in [15] solved only
scenarios 1 and 2 although the evolutionary search was
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attempted on probabilistically based scenarios as well.
Initially, the blue and yellow colours are assigned to the

high and low rewarding flowers respectively, or vice versa on
a random basis. During the scenario, the colours are inverted,
thus changing the association between colour and high/low
reward. The random initial assignment and the following
switch of colours introduce uncertainty in the environment.

Note that the numerical values for quantities of nectar
shown in Table I have been chosen carefully to exclude trivial
strategies based on the preference for a given value or interval
of values.

The lifetime of a bee is simulated by presenting scenarios
1, 2 and 3 sequentially. Scenario 4 is used for testing only.
Three hundred flights are performed with scenario switching
points at flights 101±15 and 201±15. The colours of flowers
are inverted about half way through each scenario at flights
51 ± 15, 151 ± 15 and 251 ± 15. Colours are also inverted
at scenario switching-points with probability 0.5: this is to
avoid a predictable pattern of the high rewarding flower.

IV. IMPLEMENTATION

Three input neurons provide the percentage of grey, blue
and yellow colours seen at each time step. An input neuron
for the reward provides a measure of the nectar collected
upon landing. The reward input is 0 during the flight, and
assumes the value of the nectar content at the landing step
only. Additionally, a landing signal that assumes value 1
upon landing and remains 0 during the flight is provided.
The landing signal is particularly important to indicate when
the expected reward is due and therefore allow the neural
network to detect a prediction error. In [15], differential
colour inputs were provided to the neurocontroller. We also
made differential inputs available to evolution to assess
their utility. An output neuron controls the actions of the
bee. A constant input set to 1 served as bias. Connection
weights are in the range [0.3, 30] obtained with logarithmic
quantisation from alignment scores in the interval [16,36].
Alignment scores are computed according to the scoring
matrix described in [20, page 89].

Seven parameters are evolved with the neurocontroller:
parameters m and b for the probability of direction change;
parameters A, B, C, D and η from equation 1. Parameters
are represented as real values in the following range: [5,45]
for m, [0,5] for b, [-1,1] for A, B, C, D and [0.05,50] for η.

The search on the AGE genome is performed by a
standard, fairly configurable evolutionary algorithm [30].
For this experiment we set a population size of 100. The
fitness is the amount of nectar collected by each individual
during the evaluation. The truncation selection mechanism is
applied to select the 50 best individuals from the population.
The best individual is kept unchanged in the population.
Recombination probability is 0.1. Mutation on the AGE
genome is performed by nucleotide substitution and insertion
that operate on a single nucleotide, fragment duplication and
transportation that operate on sequences of more nucleotides
(fragments) with probability 4.0 · 10−4. A slightly higher
probability of 4.5 · 10−4 was applied to nucleotide and
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Fig. 6. Best and average fitness in one run.

fragment deletion. Genomes of generation zero are initialised
with two neurons for each type and random terminal se-
quences of length 25, i.e. random connection weights.

V. RESULTS

Fifty independent runs were executed. The runs terminated
after 4000 generations. Forty-five out of the 50 runs discov-
ered an online learning strategy. Figure 6 shows a typical
example of fitness graph. The discovery of a strategy is
indicated by a jump in the fitness values. Jumps in different
runs occur at various times during evolution, some at an
early stage, some later. However, once a strategy is found,
the fitness values increase relatively quickly.

The average reward in the field (190μl per lifetime) is the
threshold that indicates when an association between reward
and flower-colour is discovered. The maximum fitness is
not well defined given the stochastic nature of rewards in
scenario 3. A reference value, however, is given by 270μl that
is the sum of average rewards provided by optimal choices
during a lifetime.

Two additional sets of experiments without neuromod-
ulation were executed for comparison. Twenty runs were
performed with neuromodulation switched off, therefore
evolving topologies of fixed-weight networks. Other twenty
runs were executed with a constant neuromodulatory value of
1 for all neurons, therefore evolving topologies with plasticity
fully enabled. Only two runs out of forty (all from the fixed-
weight case) displayed a learning strategy, allowing to cross
the 190μl threshold. However, even in these successful runs,
performance was low as controllers displayed learning in
scenario 1 or 2 only, while failing on the more difficult
probabilistically rewarding scenario 3.

A. Adaptivity of Networks to Scenarios

At the end of the evolutionary search, the controllers
were tested on the 3-scenario life used for evolution. Figure
5(a) shows the behaviour of one bee. At contingencies and
scenario switching-points1, the bee requires a certain number
of flights to change its preference. However, the correct

1The variability of switching-points during evolution was removed during
testing to have equally long scenarios.
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51 101 151 201 251 300
Bee’s lifetime (flights)

201 211 221 231 241 251 261 271 281 291 300
Bee’s lifetime (flights)

Bee’s choice

High rewarding flower (optimal choice)

Flights ended with a null reward

Bee’s choice

Zoom on scenario 3

(a)

(b)

Fig. 5. Behaviour of a bee during a 300-flight lifetime. (a) The choice of flower for each of the 300 flight is reported on the horizontal time-scale. The
top bar indicates the colour of the high-rewarding flower, i.e. the optimal choice. The second bar shows the choice made by the evolved bee. (b) Zoom in
of scenario 3 (last hundred flights): an additional horizontal bar at the bottom shows the flight in which the bee collected a null reward.

Fig. 7. Network topology of a well-performing bee. The square boxes
on top represent the input neurons where G, B and Y are the percentages
of grey, blue and yellow colours seen by the bee; dG, dB, dY represent
differential colour values at each step. R and L are the reward and landing
signals. The square labelled ”1” is a constant input of 1 that provides
a bias to the neurons. Continuous lines with black triangles indicate
positive connections, dashed lines with white triangles negative connections.
Dashed circles around a neuron indicate that the neuron is reached by a
neuromodulatory connection and the synapses that connect to that neuron
undergo synaptic plasticity according to equation 1. The initial weights are:
G-Out: -0.37; G-Mod: -0.37; B-Out: 0.175; Y-Out: 0.30; B-Mod: 0.60;
Y-Mod: 0.60; R-Mod: -0.3; R-Out: -14.66; L-Mod: 1.95; L-Out: 9.56.
Evolvable parameters are: A: -0.79; B: 0.0; C: 0.0; D: -0.038; η : 0.79;
m: 42.47; b: 4.75.

association between colour and high rewarding flower is
always achieved.

It is interesting to note that the bee seems to take longer
to switch preference when the scenario changes (at flights
101 and 201), whereas it changes preferences more rapidly
when the colour is inverted (at flights 51, 151, and 251). This
is because strategies vary considerably between scenarios,
for example requiring to avoid a zero-rewarding flower in

scenario 2, but not so in scenario 32. Figure 5 suggests that
the bee has remarkable learning capabilities that do not just
allow the association of colour stimulus and reward, but also
the determination of a better rewarding flower on the basis of
long term historical information from sampling. To support
further this conclusion, we plotted the flights that ended
with a zero-reward in Figure 5(b). The zoom on scenario
3 show that when a flower has been chosen, the bee insists
visiting the same flower in spite of zero-rewards that are
occasionally collected. However, the deceiving experience of
more zero-rewards in a row makes the bee switch flower at
flight 262, after sequentially collecting a null reward from
the good flower three times. Yet, the preference is switched
back immediately to the correct one.

Scenario 1,2 and 3 constituted the simulated lifetime of
the bee during evolution. A more challenging test was carried
out on the unseen scenario 4: the two flowers yield the same
reward but have different probabilities of returning a zero-
reward (see Table I). Surprisingly, Figure 8 shows that the
bee is able to learn which flower returns a high mean in the
long run. The test was tried twice with considerably different
numerical values of reward.

B. Network Analysis

To understand the neural principles and the main character-
istics of the evolved solutions, we examined the components
and connections of the best 5 networks of each successful
run, in total 225 networks. Because each independent run was
free to evolve any topology, plasticity rules and modulatory
structure, a comparison of different solutions is difficult.
However, we noticed that successful controllers presented
some common features. Figure 7 shows an example of an
evolved network.

Differential inputs are used at 10% only, suggesting that
these inputs proposed in [15] are not necessary. The reward

2While a null reward in scenario 2 is given only by the low rewarding
flower, in scenario 3 the high rewarding flower gives occasionally a null
reward, see Table I
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1 11 21 31 41 51 61 71 81 91 100
Bee’s lifetime (flights)

High rewarding flower (optimal choice)

Bee’s choice, scenario 4, reward 0.8

Bee’s choice, scenario 4, reward 0.3

Fig. 8. The bee is tested twice on the unseen probabilistically rewarding scenario 4 with rewards 0.8μl and 0.3μl.

signal (R) is used in 100% of controllers. This is due to the
fact that only by listening to the reward signal the network
can discover the high rewarding flower and detect changing
contingencies. The landing signal (L) is present in 220 net-
works, indicating that evolution found this signal beneficial.
At a further analysis, we found that in approximately 75%
of solutions, the landing signal projects excitatory connec-
tions to modulatory and standard neurons, while the reward
input sends inhibitory signals. Thus, the modulatory signal
is activated by landing, and enables the network to learn
new input/output correlations. Simultaneously, the reward
signal corrects the synapse update according to a measure
of good/bad surprise.

All the networks have at least one modulatory neurons and
one standard neuron for the output. In average, each network
has 1.11 modulatory neurons and 1.13 standard neurons.
This means that the complex foraging task can be solved
by a simple neural architecture when neuromodulation is
provided.

Figure 9 gives an important insight on the neural dynam-
ics. The modulatory signal saturates at landing, instructing
the network to update synaptic weights. A low level of
modulation is present during the flight as well, allowing for
a slow decay of synaptic weights, and reflecting a decay of
expectation in absence of reward. Most interesting is also the
fact that neuromodulation drops to zero at times: this happens
when the bee sees grey colour outside the field. Because the
outside of the field provides null reward in all scenarios, and
it is not subject to contingency change, synaptic plasticity
- and thus learning - is switched off. In other words, the
evolved network with neuromodulation enables learning only
when the environmental contingencies require adaptation.

VI. CONCLUSIONS

Starting from the biological evidence on neuromodula-
tory dynamics, we suggest that Artificial Neural Networks
(ANNs) learning capabilities can be enhanced with the
inclusion of such models for synapse plasticity.

Here, we introduce a neural model of heterosynaptic
plasticity and search the topology space with an evolution-
ary algorithm and Analog Genetic Encoding (AGE). The
results show that the neurocontrollers autonomously discover
neuromodulation during evolution and maximise the total
reward in an uncertain foraging environment. Our solutions
proved to acquire a general learning strategy capable of

coping with more scenarios. These results outperform the
neural controllers with fixed architecture described in [15]
that solved only a subset of the proposed scenarios. It is
remarkable that one controller do not only solve equally well
all scenarios used during evolutions, but also cope success-
fully with a qualitatively different unseen scenario, regardless
of numerical reward values. Additional experiments run for
comparison without neuromodulation performed extremely
poorly both in the case of fixed-weight networks and tradi-
tional Hebbian learning networks.

We showed that the key feature of neuromodulation
consists in activating plasticity only at critical time steps,
for example at landing when the reward stimulus is due,
modulating synaptic update during flight and deactivating
learning when it is not required.

Although the behaviour of the evolved bees displays a
complex reinforcement learning dynamic, the neural con-
trollers designed by evolution are compact and utilise few
neurons. This suggests that neuromodulation provides an ef-
ficient tool to implement subsymbolic reinforcement learning
mechanisms.

Our study showed that the evolution of neuromodulatory
structures is possible and provides solutions with remarkable
computational power. This opens the possibility of investi-
gating the use of such networks for increasingly complex
learning problems. Moreover, our evolutionary search of
topologies was motivated by the evidence that such structures
play an important role in biological neural substrates. Thus,
the modulatory network topologies discovered by artificial
evolution represent valid computational models for neuro-
science and ethology.
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