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ABSTRACT 

 

This commentary considers some of the basic issues in the development of autonomous virtual 

agents from a rather general and theoretical viewpoint.  It is predicated on an understanding of 

agents as ideal Bayesian observers, which follows in the long tradition of Helmholtzian ideas about 

how the brain works and subsequent developments in machine learning and computational 

neuroscience.  The aim of this commentary is to define some key aspects of the problem and discuss 

potential solutions in relation to a series of specific research questions.  In what follows, we try to 

cast the problem in terms of optimisation, which is particularly pertinent from the point of view of 

evolutionary schemes.  The focus will be on maximizing the evidence for an agent’s model of his 

world or, more precisely, minimizing a variational free energy bound on negative model log-evidence 

or surprise. This has proven to be a useful framework in the computational neurosciences; and can 

be shown to be a fairly universal explanation for action and perception.  Within this setting, the 

notion of a model (entailed by a subject) and a model of that subject (entailed by an agent observing 

the subject) is central. Framing the problem in terms of models raises key questions about their 

nature; particularly their dynamical form and implicit state spaces. A model-based perspective 

provides many clear answers to these questions.  However, there are some key choices that may 

need to be formulated carefully, particularly in relation to difference between simply modelling the 

behaviour of a subject and modelling that behaviour under the constraint that the subject is 

modelling his world. We will focus on this distinction in terms of the difference between Bayesian 

and meta-Bayesian modelling of subject behaviours by virtual agents. 
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INTRODUCTION 

 

This commentary is meant to be a discussion document that tries to highlight some of the key issues 

posed by research questions about the development or autonomous virtual agents. These virtual 

agents try to predict subject responses and help them make decisions (for example, when and how 

to release personal identifying information on social networking sites).  The purpose of this 

commentary is to set out the basic issues and provide answers to key questions when they exist and 

highlight other questions that have yet to be resolved. We first consider the basic imperatives of 

modelling subjects using a variational free energy formulation of optimal behaviour and optimal 

inferences (modelling of) that behaviour. We will then move on to the nature of the models 

underlying this inference and finally consider some specific questions in light of these 

considerations.   

 

 

MODELLING THE BEHAVIOUR OF OTHERS 

 

A key question, when it comes to modelling the behaviour of others (such as by a virtual agent or 

surrogate for a subject) is the implicit modelling of a model.  This follows because subjects or real 

world agents can be seen as optimising a model of their world.  This means to model a subject one is 

implicitly trying to fit or invert a model of a model.  In other words, the problem is one of meta-

modelling.  To make this distinction clear, consider the following problem: We have available to us a 

sequence of action-state pairs defined on some state space over some finite time or interval.  These 

are the data available to the virtual agent and can be regarded as the observed responses of a 

subject to observed states, where the subject is treated as a state space model.  The observed states 

could correspond to inputs the subject has sampled and his action corresponds to outputs or 

responses emitted by the subject.  The objective is to model the subject in order to predict 

unobserved actions given the history of observed actions and states.  To solve this problem, one 

could model the subject in terms of internal or hidden states that remember the inputs and produce 

outputs or action.  In other words, we could model the subject as a state space model, mapping 

from observed inputs (what the subject sees) to output (what the subject does).  This is essentially a 

system identification problem in which one has to optimise the model and its parameters describing 

the hidden states of the subject.  This could be done with some form of Bayesian model inversion or 

filtering and Bayesian model comparison to select the best model.  This would constitute a 

straightforward Bayesian approach to optimising a virtual agent that could, in a Bayesian setting, use 

the predictive distribution over the next action to provide guidance for the subject’s next choice.  

However, note that this approach does not exploit our prior beliefs about the subject.  In other 

words, there are no constraints on the model of the subject as a state space model that embody our 

knowledge that the subject is itself behaving optimally in some sense.  So what sort of constraints 

could be considered? 

 

 

IDEAL BAYSIAN OBSERVER CONSTRAINTS 

 

One obvious answer is that the subject is himself modelling the inputs and selecting the outputs in a 

Bayes-optimal fashion.  This implies that the subject has his own model of the world that is providing 
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sensory inputs, which he is optimising in relation to some objective function.  The most natural 

choice here is the evidence for the subject’s model that is motivated easily by considering 

perception and action as inference [1,2,3,4]. Our own work in this area formalises this in terms of 

active inference and the minimisation of a variational free energy bound on surprise [5]; where 

surprise is negative model log-evidence [4].  This provides a generic account of action and 

perception that is consistent not only with many neurobiological facts but can also be shown to be 

imperative for any self-organising system immersed in an inconstant world. 

 

This means that we can regard the subject as optimising his internal (generative) model of the world 

to minimize variational free energy (a function of sensory inputs and a probabilistic representation 

under his model).  At the same time, he is acting to minimise variational free energy, which simply 

means he is sampling inputs that confirms his hypotheses.  This is active inference.  In this setting, 

optimal behaviour is that which conforms to prior beliefs about what will happen next.  In the larger 

context of modelling the subject, this ideal Bayesian assumption means that the form of the state 

space model of the subject should itself comply with Bayes-optimality principles.  This leads to the 

notion of Bayes-optimal inferences about a system that is itself Bayes-optimal.  In other words, it 

calls for a meta-Bayesian approach that has been described recently in terms of observing the 

observer [6].  

 

To my mind, use of a Bayesian or meta-Bayesian approach is probably the least resolved of all the 

questions that have to be answered to progress the development of autonomous virtual agents: On 

the one hand, the meta-Bayesian constraints on the model of the subject may greatly reduce the 

model space and finesse problems in searching over all potential models at the meta-modelling level 

(i.e. optimising the virtual agents model of the subject’s model of the world).  On the other hand, the 

level of computational complexity may increase markedly, in that the agent has to perform a 

Bayesian inversion (as if it were the subject) to produce predicted responses at each iteration of 

meta-model inversion.  Furthermore, to use a comprehensive model of the subject that even 

approximates a real human being is, obviously, an enormous undertaking.  In my view, this issue 

deserves some thought.  Figure 1 tries to illustrate the difference schematically using variational free 

energy minimisation as an example of approximate Bayes-optimal inference. The variables and 

equations in this figure are described in more detail in the appendix, which also provides a slightly 

more technical overview of active inference for discrete state space models. 

 

 

THE NATURE OF THE MODEL 

 

Irrespective of whether a Bayesian or meta-Bayesian approach is taken, there are some fundamental 

restrictions on the nature of the model of the subject that can be articulated.  First, we are dealing 

with a dynamical system, where causes have consequences and the subject’s observations lead to 

subsequent responses.  This means that one has to use a dynamical (state space) model of the 

subject (with or without ideal Bayesian constraints) to predict a series of responses.  This can either 

be in continuous time, where the subject is modelled in terms of differential equations or in discreet 

time using a hidden Markov model over hidden states.  The former has proven useful for simulating 

low level perceptual and behavioural dynamics in computational neuroscience [7]. However, one 

might guess that the nature of the data available to the virtual agent would make a discrete time 
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and state space model more viable.  In other words, the subject is modelled in terms of probability 

transitions among hidden states where those probabilities are determined by the current input, 

which is itself determined by the previous behaviour or action.  Action itself is a function of the 

probability distribution over hidden states and can either be predicted directly or prescribed by 

minimizing variational free energy under the meta-Bayesian approach (see Figure 1).  

 

 

Figure 1: This figure highlights the difference between a Bayesian approach (on the left) and a meta-Bayesian approach (on 

the right). In this figure, known variables are in white circles and hidden variables are in grey circles. The straightforward 

Bayesian approach treats the subject as a (Markovian) input-state-output system, where observed states influence hidden 

states to produce observable responses or action. In this setup, we want to infer the hidden states and the parameters of 

the transition probabilities among hidden states. Equipped with these, we can then predict subsequent action given any 

history of observed states. This inference rests on inversion of the implicit generative model of subject responses, which (in 

this example) uses variational Bayesian procedures to minimise the free energy of observed responses and the sufficient 

statistics of an approximate posterior distribution over the subject’s hidden states. The meta-Bayesian approach is a little 

more sophisticated and assumes that the hidden states of the subject themselves encode posterior beliefs about what the 

subject observes. These posterior beliefs are based upon the subject’s generative model (shown as an insert) that generates 

predictions about observed states, given hidden states of the world. These hidden states minimise a variational free energy 

bound on the evidence for this model of the world, with respect to posterior beliefs. At the same time, actions are selected 

that minimise the expected free energy of the next of observed state. Crucially, this entails the notion of embodiment 

because the next observation depends upon the action selected. The hidden states are now posterior beliefs of the subject 

and meta-model inversion corresponds to evaluating the approximate posterior distribution over the posterior beliefs of the 

subject. This part is formally the same as in the Bayesian approach but the underlying generative model acknowledges 

explicitly that the subject is himself performing model inversion (under ideal Bayesian assumptions). Meta-model inversion 

is numerically more costly; because the hidden states (posterior beliefs of the subject) generating predictions of observed 

responses are themselves optimising a generative model at each time point. The potential advantage is that the form of the 

generative model of the subject is specified by the subject’s generative model of his world. Please see the appendix for a 

detailed explanation of the equations and variables. 
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In either case, it will be necessary to define the input space of observed states, the hidden state 

space and the action space of observed responses. In addition, model parameters described how 

inputs affect probability transitions among hidden states and how probabilistic representations of 

hidden states determine action.  One key issue that emerges from these considerations is that the 

prediction of the subjects final choice (e.g., to release or not personal information or who to share 

that information with) is only part of the problem.  To optimise the model of the subject (in terms of 

the parameters of the differential equations or probability transition matrices), one clearly needs to 

use all the observed inputs and subject responses over all preceding time points.  In other words, to 

optimize predictions about a particular behaviour one has to optimise predictions about all 

responses.  This may be a useful consideration when thinking about how to measure and record 

subject responses to create a space of actions.  A related issue here, that is specific to the meta-

Bayesian approach, is whether the agent actually thinks about its behaviour or not.  This introduces 

an additional level of complexity; in that to plan or think about behaviour the agents hidden state 

space (representing hidden states in his world) has to be extended over time [8]. This can create 

another computational burden and may and may not be necessary for veridical subject modelling.  

 

 

SOME SPECIFIC QUESTIONS 

 

Given the above observations I will now consider some specific questions: 

 

1) Would a bottom-up approach allow individual preferences to be represented by an artificial 

agent? 

 

A bottom-up approach here is taken to mean the optimisation of a model of the subject and ensuing 

predictions of their responses.  In many respects the above arguments suggest that this is the only 

approach.  Classical top-down approaches can be regarded as heuristics in which one imposing 

strong prior beliefs about the form and parameters of the subject’s model.  These (virtual agent) 

prior beliefs may or may not be right but should certainly be tested against the evidence for these 

beliefs in empirical behaviour: this is the bottom-up approach.   

 

2) If so what are the constraints limiting the size of the input domain?   

 

This will be determined by the computational complexity of model inversion or fitting.  These 

complexity issues could be compounded by the meta-Bayesian approach if the hidden state space of 

the subject becomes too large (or incorporates future states [8]). One interesting answer this 

question is that the model is itself determined by the number of hidden states.  This means that one 

can assess the evidence for different models of the subject and optimize the evidence empirically by 

using Bayesian model selection.  Bayesian model selection simply involves quantifying the goodness 

of a model in terms of its evidence given some data and then selecting the model with the greatest 

evidence [9]. Practically, the log evidence is usually assessed using variational techniques [10] that 

avoid stochastic procedures like Gibbs sampling, which can be computationally too burdensome.  
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Indeed, this is the basis of variational free energy minimisation discussed as a model of a Bayes-

optimal subject above. 

 

3) In order to represent a human how closely does the agent’s conceptual structure have to align to 

humans? 

 

This question speaks directly to the distinction between the Bayesian and meta-Bayesian approaches 

above.  If the virtual agent’s model of the subject can explain the subject’s behaviour, then its model 

must be an approximation or formally equivalent to the model being used by the subject.  In this 

sense, it is absolutely critical to align the agent’s conceptual structure (model of the subject) to the 

actual subject.  The degree to which this is possible will clearly depend upon computational 

resources.  Again, even with the Bayesian (as opposed to meta-Bayesian) approach, optimising the 

model evidence for agent’s model will ensure that its conceptual structure and that of the subject 

will, in some sense, become sufficiently aligned.  In this sense, I do not think this is a deep problem. 

 

4) What function does embodiment having in evolving contextual processing? 

 

Embodiment enters subtly here as an integral part of the model of the subject.  This is because the 

subject is acting upon the world to disclose his next sensory input.  However, the virtual agent is not 

embodied and does not act upon its world.  In this sense, the problem is actually a simple inference 

problem about an embodied agent.  It is not inherently an embodiment problem itself. 

 

5) What are the specific roles of evolution versus learning? 

 

From the point of view of Bayesian model selection, there is no difference.  The quantities that have 

to be estimated are the form and parameters of the model of the subject used by the virtual agent 

to predict subject behaviour.  In other words, the virtual agent has to learn the parameters and 

evolve the model.  Both these optimisation processes minimize variational free energy (or maximize 

model log-evidence).  The only difference is that the optimization of the model parameters of a 

particular model is called learning; while evolution optimizes the model per se (for example, the 

number and hierarchal deployment of hidden states and allowable state transitions).  

 

6) Does during the evolutionary phase how closely does an agent’s world have to resemble our own 

or can that be accommodated by an appropriate fitness function? 

 

From the active inference and meta-Bayesian perspective, the agent’s world is basically a world that 

comprises the subject that is exposed to inputs and produces outputs or responses.  As noted above, 

the model of the subject has to correspond closely to the subject’s model or our own model of the 

world.  Having said this, the way that these models are optimised is through the variational free 

energy associated with each model.  This is the appropriate fitness function.  In short, the answer to 

this question is that the appropriate fitness function (variational free energy) ensures the virtual 

agent’s model of the subject world will resemble the subject’s model of his world (i.e. our model) 

 

7) Are current advances in evolutionary algorithms up to the job of reaching these objectives? 
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Although this is not my field of expertise, I can see no reason why evolutionary algorithms would not 

be perfectly suited to optimizing the form or structure of the subject model; where, as noted above, 

the objective function is the model evidence (or free energy – also known as free fitness  [11]). 

 

8) Can the appropriate dynamical systems that the agent uses be evolved from the bottom up or do 

we have to create the neural net with the appropriate structure first? 

 

It is clear that the appropriate dynamical systems (state space models) have to be created from the 

bottom up.  In the context of the current arguments, the process of evolving and optimising this 

model is the process of creating a neural net with appropriate structure.  One can certainly use 

intuitions and prior beliefs to limit the space of these forms but, conceptually, creating the net is the 

problem because this is optimising the subject model. 

 

9) What are the potential implementation deployment obstacles? 

 

These pertain largely to the sufficient discretisation of state space (under a discrete Markovian state 

space model of the subject) and sufficient computational resources to invert these models.  The key 

problem here will be an exploration of model space and devising greedy searches that explore 

appropriate hierarchical forms. Scoring large model spaces is clearly a deep and important problem; 

however, the evolutionary approach seems ideally suited to this. There are recent advances in the 

scoring (evaluating the evidence or free energy) of large model spaces that may be useful here [9]. 

 

10) What can be done to overcome these obstacles? 

 

There are a number of approximate Bayesian inversion techniques that are used in data analysis 

(and the modelling of perception and action) the most powerful is the use of variational Bayesian 

procedures (hence the minimization of variational free energy [10]). Although this is beyond my field 

of expertise there may be some useful pointers in [8], where extremely high dimensional counter-

factual state spaces are searched under simplifying (Laplace) assumptions. As noted above, the 

problem of scoring large numbers of models can also be finessed using the Savage-Dickey ratio and 

its generalisations [9]. 

 

 

CONCLUSION 

 

In summary, I think the biggest challenge at this stage would be to decide whether to place formal 

constraints on the state space models of a subject that cast the subject as an ideal Bayesian 

observer, with or without the capacity to plan (represent future hidden states).  Otherwise the 

notion of using evolutionary schemes to optimise the model of a subject by a virtual agent seems 

compelling and the most natural approach.  I say this because the problem of searching large model 

spaces and optimising the implicit objective function (free energy or model evidence) is a difficult 

problem that can probably only be solved using an evolutionary approach. For me, the nature of 

these models is clear in their broadest terms; however, much will be dictated by the sort of data 

available to the virtual agent and the ontology of inputs and outputs received by and produced by 

the subject respectively.    
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At this stage, I would consider a simple Bayesian system identification approach, where the virtual 

agent is trying to model the subject as an input-state-output system. This reduces the problem to a 

conventional system identification problem.  If successful, the form of the model (that will include 

the hidden state space) could be interpreted, post hoc, in terms of implicit posterior beliefs and prior 

expectations held by the subject.  The only disadvantage of this approach is that the model is not 

constrained to include some important features; for example, the subject knows the subspace of 

sensory inputs that will follow from a particular action and will therefore be able to make predictions 

that the agent’s model of the subject could miss.  Note that the agent’s model of the subject is not 

embodied in the sense that the inputs and outputs are all known data-points and the problem is 

simply the optimisation of a mapping from inputs to outputs.  However, from the subject’s point of 

view there is embodiment in the sense that inputs depend upon outputs.  The key question here is 

should the agent’s model of the subject use this embodiment as a constraint?  The quintessential 

difference between the Bayesian and meta-Bayesian approaches to system identification reduces to 

an interpretation of the subject’s hidden states as a probabilistic representation (i.e. sufficient 

statistics or posterior beliefs) of a subject. I hope that these thoughts are useful in framing the 

discussion of these issues. 

 

 

 

 

Appendix – Active inference and variational free energy 

 

This appendix describes the formalism of active inference, in which the optimisation of action and 

beliefs about hidden states are treated as two separate processes that maximise model evidence or 

the marginal likelihood of observations.  

 

 

The free-energy principle and active inference 

 

The free-energy principle tries to explain how agents occupy a small number of attracting states in 

terms of minimising the entropy of the (invariant) probability distribution over observed states. This 

minimisation is assured if agents minimise surprise at each time point. Surprise, or more precisely 

surprisal or self information, is a (probability) measure ln ( | )P o m−  on the states observed by an 

agent. Here, surprise is just the negative log likelihood of observations marginalised over hidden 

states. This marginal likelihood is also known as model evidence. This means that surprise is 

minimised (approximately or exactly) if agents minimise a variational free energy bound on negative 

log evidence [6], [7], given a generative model m  of state transitions  [2], [4]. 

 

The free energy principle [4] is based on ergodic arguments about the nature of self-organising 

systems. These arguments suggest that the long term average of variational free energy upper 

bounds the (Shannon) entropy of observations over time; which implies that action must minimise 

variational free energy to resist the second law of thermodynamics (or the dispersion of its states by 
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random fluctuations). This is active inference [5], which extends the minimisation of variational free 

energy implicit in approximate Bayesian inference on hidden states to include action per se. There is 

a fairly developed literature on free energy minimisation and active inference in the neurosciences; 

covering things from perceptual categorisation of bird songs, through to action observation [7]. 

 

In the present context, active inference unpacks some of the implicit assumptions in Markov 

decision problems. In particular, it specifies explicitly what the agent knows about the effects of its 

actions. As we will see, this means that probabilistic transitions among observations are conditioned 

upon action, which serves to realise posterior beliefs about state transitions. This conditioning of 

observations on action (as opposed to conditioning states on action) is not unrelated to treatments 

based on observer operator models and predictive representations of state: see [8] and [9].  

 

Definition: The free energy formulation comprises the tuple ( , , , , , , )S A P Q RϑΩ  comprising: 

• A finite set of observations Ω . 

• A finite set of hidden states S . 

• A finite set of actions A . 

• Real valued parameters 
dϑ ∈� . 

• A sampling probability 1( | , ) Pr({ : , })
t t t

R o o a o o o o a a+
′ ′= = = =  that observation o′∈ Ω  

at time 1t +  follows action a A∈ , given observation o′∈ Ω  at time t.   

• A generative probability 0 0( , , | ) Pr({ , , } ,{ , , } , )
t T

P o s m o o o s s sθ ϑ θ= = = =… …  over 

observations to time t, states at all times and parameters 

• A recognition probability 0( , | ) Pr({ , , } , )
T

Q s s s sθ µ ϑ θ= = =…  over states at all times 

and parameters with sufficient statistics 
dµ ∈� .  

 

Here, m  denotes the form of the generative model or probability ( , , ) : ( , , | )
m

P o s P o s mθ θ=  and 

the sufficient statistics of ( , | ) : ( , | )Q s Q sµ θ µ θ µ=  encode a probability distribution over a 

sequence of hidden states 0{ , , }
T

s s s= …  and the parameters of the generative probability ϑ θ= . 

Crucially, the recognition probability and its sufficient statistics encode hidden states in the future 

and past, which themselves can change with time: for example, 0{ , , }k k

k T
µ µ µ= … , where 

k

t
µ  is the 

probability over hidden states at time t  (in the future or past) under the recognition probability at 

time k . 

 

Remarks: There are three important distinctions between this setup and that used by classical 

Markov decision processes (MDPs). As in partially observed MDPs, there is a distinction between 

states and observations. However, the transition probability over states is replaced by a sampling 

probability over observations. This means, we can formulate everything in terms of observed states 

(observations) and inference on hidden states. In other words, the agent does not need to know the 

effect of its actions on the state of the world. It is instead equipped with a probabilistic mapping 

between its actions and sensory consequences. This may sound a bit unusual but is a central tenet of 

active inference, which separates knowledge about the sensory consequences of action from beliefs 

about the causes of those consequences. In other words, the agent knows that if it moves it will 

sense movement (cf. proprioception); however, beliefs about hidden states in the world causing 
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movement have to be inferred. These hidden states may or may not include its own action: the key 

distinction between the agency free and agency based schemes considered in [8] depends on 

whether the agent represents its own action or not. 

 

The second distinction is that we have introduced generative and recognition probabilities that are 

used to infer hidden states. Crucially, these hidden states include future and past states. In other 

words, the agent represents a sequence or trajectory over states, as opposed to just the current 

state. Both the generative and recognition probabilities are time-dependent: The generative 

probability is over the sequence of sensory states up until the current time, while the recognition 

probability changes with its time-dependent sufficient statistics. This means that the recognition 

distribution at any one time is over the sequence or trajectory of states at all times. This enables 

inference about a particular state in the future to change with time. This becomes important when 

considering planning and agency. 

 

Finally, there are no reward or cost functions. This is an important point and illustrates the fact that 

active inference does not call upon the notion of reward to optimise behaviour; optimal behaviour 

minimises variational free energy. In brief, cost functions are replaced by priors over hidden states 

and transitions, such that costly states are surprising and are avoided by action.  

 

 

Perception and action 

 

We now require the sufficient statistics of the recognition probability and action to minimise 

variational free energy 

 

0

1 1

arg min ({ , , }, )

arg min ( | , ) ( , )

F

F

t t

t t t t t t
a

o o
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µ
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µ+ +Ω

=
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     (1) 

 

This dual optimisation is usually portrayed in terms of perception and action, by associating the 

sufficient statistics with internal states of the agent (such as neuronal activity or connection 

strengths) and associating action with the state of effectors or the motor plant. 

 

By factorising the generative probability ( ), , | ( | , ) ( , | )P o s m P o s P s mθ θ θ=  into a likelihood and 

prior, one can express the free energy in the following three ways: 

 

( , ) ( ln ( , , | )) ( ln ( , | ))

( ( , | ) || ( , | )) ln ( | )

( ( , | ) || ( , | )) (ln ( | , ))

Q Q

KL

KL Q

o P o s m Q s

Q s P s o P o m

Q s P s m P o s

µ θ θ µ

θ µ θ

θ µ θ θ

= − − −

= −

= −

E E

D

D E

F

   (2) 

 

The first equality in equation (2) expresses free energy as Gibbs energy (expected under the 

recognition distribution) minus the entropy of the recognition distribution. The second shows that 

free energy is an upper bound on surprise, because the first (Kullback-Leibler divergence) term is 
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nonnegative by Gibbs inequality. This also means that when free energy is minimised, the 

recognition density approximates the posterior density ( , | ) ( , | )Q s o P s oθ θ≈  over hidden states 

and parameters. This formalises the notion of unconscious inference in perception [1], [2] and, 

under some simplifying assumptions, corresponds to predictive coding [3]. Finally, the last equality 

expresses free energy as complexity (the divergence between the approximate posterior and prior) 

minus accuracy (the expected log likelihood). 

 

The minimisation of free energy, with respect to action in equation (1) is called active inference. This 

formulation highlights the fact that action selects observable states (not hidden states) that are the 

least surprising by virtue of having the smallest free energy. The free energy is determined by the 

sufficient statistics of the recognition distribution. The optimisation of these sufficient statistics (first 

equality in equation 1) rests upon the generative model and therefore depends on prior beliefs. It is 

these that specify what is surprising and underwrite Bayes-optimal policies and behaviour. 
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