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Abstract—Changeability and privacy protection are important
factors for widespread deployment of biometrics-based verifi-
cation systems. This paper presents a systematic analysis of a
random-projection (RP)-based method for addressing these prob-
lems. The employed method transforms biometric data using
a random matrix with each entry an independent and identi-
cally distributed Gaussian random variable. The similarity- and
privacy-preserving properties, as well as the changeability of the
biometric information in the transformed domain, are analyzed
in detail. Specifically, RP on both high-dimensional image vec-
tors and dimensionality-reduced feature vectors is discussed and
compared. A vector translation method is proposed to improve
the changeability of the generated templates. The feasibility of the
introduced solution is well supported by detailed theoretical analy-
ses. Extensive experimentation on a face-based biometric verifica-
tion problem shows the effectiveness of the proposed method.

Index Terms—Biometrics, changeability, face recognition,
privacy, random projection (RP).

I. INTRODUCTION

T RADITIONAL methods of identity verification are based
on knowledge (e.g., passwords and PIN) or possession

factors (e.g., ID cards and token). Such methods afford low
level of security since passwords and PIN can be forgotten and
acquired by covert observation, while ID cards and token can
be lost, stolen, and easily forged. Biometrics-based verification
systems confirm an individual’s identity based on the physio-
logical and/or behavioral characteristics of the user. Biometrics-
based methods provide direct link between the service and the
actual user. With biometrics, there is nothing to lose or forget,
and it is relatively difficult to circumvent [1].
A biometric verification system is a one-to-one match that

determines whether the claim of an individual is true. Fig. 1
shows the general block diagram of a biometric verification
system. During enrollment, a feature vector x is extracted
from the biometric data of each user and stored in the system
database as a template. At the verification stage, a feature vector
x′ is extracted from the biometric signal of the authentication
individual U′ and compared with the stored template x of
the claimed identity U through a similarity function S. The
evaluation of a verification system can be performed in terms
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Fig. 1. General block diagram of a biometrics-based verification system.

of hypothesis testing [2]: H0: U′ = U , the claimed identity
is correct; H1: U′ �= U , the claimed identity is not correct.
The decision is made based on the system threshold t: H0

is decided if S(x,x′) ≤ t, and H1 is decided if S(x,x′) > t.
A verification system makes two types of errors: false accept
(deciding H0 when H1 is true) and false reject (deciding H1

when H0 is true). The performance of a biometric verification
system is usually evaluated in terms of false accept rate [(FAR);
P (H0|H1)], false reject rate [(FRR); P (H1|H0)], and equal
error rate [(EER); operating point where FAR and FRR are
equal]. The FAR and FRR are closely related functions of the
system decision threshold t.
While biometric technology provides various advantages,

there exist some major problems [3].

1) Changeability: Biometrics cannot be easily changed or
reissued if compromised due to the limited number of
biometric traits that human has. Ideally, just like pass-
words, the users should be able to use different biomet-
ric representations for different applications. When the
biometric template in one application is compromised,
the biometric signal itself is not lost forever, and a new
biometric template can be reissued [4].

2) Privacy: Biometric data reflect the user’s physiological
and/or behavior characteristics. If the storage device of
the biometric templates is obtained by an adversary, the
user’s privacy may be compromised. The biometric tem-
plates should be stored in a format such that the user’s pri-
vacy is preserved even the storage device is compromised.

One simple method to address the changeability and privacy
problems is to use user-specific encryption keys to encrypt the
biometric data during enrollment and decrypt at the time of
authentication. However, this method provides limited privacy
protection since the original biometric template will be exactly
recovered if the key is stolen. To deal with this, a number of
research works have been proposed in recent years. One ap-
proach is to combine biometric technology with cryptographic
systems [4]. In a biometric cryptosystem, a randomly generated
cryptographic key is bound with the biometric features in a
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secure way such that both the key and the biometric features
cannot be revealed if the stored template is compromised.
The cryptographic key can be retrieved if sufficiently similar
biometric features are presented. Error correction algorithms
are usually employed to tolerate errors. Due to the binary nature
of cryptographic keys, such systems usually require discrete
representation of the biometric data, such as minutia points for
fingerprints, and iris code. However, the feature vectors of many
other biometrics, such as face, are usually represented in the
continuous domain. Although discrete features can be obtained
by quantization, such methods usually suffer degradation of
performance due to the quantization error. Furthermore, the se-
curity level of such methods still needs to be further investigated
[5], [6].
An alternative and effective solution is to apply repeatable

and noninvertible transformations on the biometric features [2].
With this method, every enrollment (or application) can use
a different transform. When a biometric template is compro-
mised, a new one can be generated using a new transform. In
mathematical language, the verification problem can be formu-
lated as follows: Given a biometric feature vector y, the biomet-
ric template x is generated through a generation function x =
Gen(y,k). Different templates can be generated by varying the
control factor k. During verification, the same transformation
is applied to the authentication feature vector x′ = Gen(y′,k),
and the matching is based on a similarity measure in the trans-
formed domain, i.e., S(x,x′). The major challenge here lies in
the difficulty of preserving the similarity measure in the trans-
formed domain, i.e., S(x,x′) ≈ S(y,y′). Furthermore, to en-
sure the property of privacy protection, the generation function
Gen(y,k) should be noninvertible such that ŷ = Rec(x,k) �=
y, where Rec(x,k) denotes the reconstruction function when
both the template x and the control factor k are known.
In this paper, we present a systematic analysis of random

projection (RP) as an intentional, repeatable, and noninvertible
transformation for a changeable and privacy-preserving biomet-
ric template generation. RP has been used as a dimensionality
reduction or privacy-preserving tool for various applications in
the literature. Recently, it has also been applied as a privacy-
preserving tool in biometrics [7]. In this paper, we elaborate
its application in biometric verification as both dimensional-
ity reduction and privacy-preserving tools. This paper con-
tributes comprehensive and detailed mathematical analysis on
the similarity-preserving and privacy protection properties of
RP. A vector-translation-based technique is introduced to en-
hance the changeability of the generated biometric template.
The proposed method is capable of producing templates with
zero FAR when the projection matrix is changed, which indi-
cates strong changeability. This is well supported by both the
probabilistic analysis and extensive experimentation.
In this paper, we demonstrate the feasibility of the proposed

method in a face-verification scenario due to high user ac-
ceptability, easy to capture, and low-cost properties of face
biometrics. The proposed framework can find wide applica-
tions in physical access control, ATM, and computer/network
login. The remainder of this paper is organized as follows. In
Section II, we review the related works. Section III introduces
the proposed methods and provides detailed analysis. Experi-
mental results, along with the detailed discussion, are presented
in Section IV. Finally, conclusions are provided in Section V.

II. RELATED WORKS

The design of a privacy-preserving biometric system criti-
cally depends on the characteristics of the biometric data and
features. Many tentative solutions have been proposed in the
literature using various biometrics. Among the earliest efforts,
Soutar et al. [8] presented a correlation-based method for
fingerprint verification, and Davida et al. [9] proposed to store
a set of user-specific error correction parameters as template
for an iris-based system. However, both of the works lack
practical implementation and cannot provide rigorous security
guarantees [4].
In [10], Juels and Wattenberg introduced an error-correction-

based method, a fuzzy commitment scheme, which general-
ized and improved Davida’s methods. The fuzzy commitment
scheme assumes binary representation of biometric features,
and an XOR operation is used for binding of biometrics with
randomly generated keys. Hao et al. [11] subsequently im-
plemented a similar scheme on an iris-based problem using
a two-level error correction mechanism. Later, a polynomial-
reconstruction-based scheme, fuzzy vault, was proposed by
Juels and Sudan [12]. The fuzzy vault scheme works with
unordered set of features, such as the minutia points in finger-
prints. Lee et al. [13] presented a fuzzy-vault-based private-key
generation system using iris features. To produce an unordered
set of features for vault encoding and decoding, multiple iris
features were extracted from multiple local iris patches, and
the exact values of the set were generated through the k-means
clustering method. The security of the fuzzy vault method
is based on the difficulty of polynomial reconstruction. Al-
though it is shown that the fuzzy vault scheme is secure
in an information-theoretic sense, it is generally computa-
tionally complex and also vulnerable to attacks via record
multiplicity [6].
Dodis et al. [14] presented a theoretical work, fuzzy extrac-

tor, for generation of cryptographic keys from noisy biometric
data using error correction code and hash functions. Their paper
also assumes the biometric features in the discrete domain. Dif-
ferent constructions for three metric spaces, namely, Hamming
distance, set difference, and edit distance, are introduced.
Sutcu et al. [15] introduced a quantization-based method for
mapping of continuous face features to discrete form and
utilized a known secure construction for secure key generation.
However, Boyen [16] showed that the fuzzy extractor may be
not secure for multiple uses of the same biometric data.
Ratha et al. [17] introduced a framework of generating cance-

lable fingerprint templates. A few different methods, including
Cartesian, polar, and surface folding transformations of the
minutia positions, are discussed analytically and empirically.
This paper demonstrates the revocability and noninvertibility
of the proposed transformations and anticipates that the feature-
level cancelable biometric construction can be applied in large
biometric deployments. However, this paper focuses on finger-
prints whose features are usually a set of unordered minutia
positions, and the number of minutia points is variable. It is
not clear how such methods can be applied to other biometrics
such as face and iris, whose features are usually of fixed length
and order.
Kevenaar et al. [18] proposed a helper data system for gen-

eration of renewable and privacy-preserving binary templates.
A set of fiducial points is first identified from six key objects of
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a human face, and Gabor filters are applied to extract features
from a small patch centered around every fiducial point. The
extracted features are discretized by a thresholding method,
and the reliability of each bit is measured based on statistical
analysis. The binary template is generated by combining the ex-
tracted reliable bits with a randomly generated key through an
XOR operation, and a Bose–Chaudhuri–Hocquenghem (BCH)
code is applied for error correction. The indexes of the selected
reliable bits, the mean vector for feature thresholding, the
binary template, and the hash of the key are stored for verifi-
cation. Their experiments demonstrate that the performance of
the binary feature vectors is only degraded slightly comparing
with the original features. However, the performance of their
system depends on accurate localization of key objects and
fiducial points.
Savvides et al. [19] proposed an approach for cancelable

biometric authentication in the encrypted domain. The training
face images are convolved with a random kernel first. The trans-
formed images are then used to synthesize a single minimum
average correlation energy filter. At the point of verification,
a query face image is convolved with the same random ker-
nel and then correlated with the stored filer to examine the
similarity. If the storage card is ever attacked, a new random
kernel may be applied. They show that the performance is not
affected by the random kernel. However, it is not clear how the
system preserves privacy if the random kernel is known by an
adversary. The original biometric data may be retrieved through
deconvolution if the random kernel is known.
Boult [20] introduced a method for face-based revocable

biometrics based on robust distance measures. In this scheme,
the face features are first transformed through scaling and trans-
lation, and the resulting values are partitioned into two parts, the
integer part and the fractional part. The integer part is encrypted
using public key algorithms, and the fractional part is remained
for local approximation. A user-specific passcode is included
to address the revocation problem. Their method demonstrates
both improvements in accuracy and privacy. However, it is
assumed that the private key cannot be obtained by an impostor.
In the case of known private key and transform parameters, the
biometric features can exactly be recovered.
Ngo et al. [21] introduced a BioHashing method, which

produces changeable noninvertible biometric templates, and
also claimed good performance. The BioHashing method is a
two-factor authenticator based on user-specific RP of biometric
features followed by a discretization procedure. In BioHashing,
a feature vector u ∈ �N is first extracted from the user’s bio-
metric data. For each user, a user-specific transformation matrix
R ∈ �N×M , M ≤ N , is generated randomly (associated with
a key or token), and the Gram–Schmidt orthonormalization
method is applied to R, such that all the columns of R are
orthonormal. The extracted feature vector u is then transformed
by x = RTu, and the resulting vector x is quantized by bi = 0,
if xi < τ , and bi = 1, if xi ≥ τ , i = 1, 2, . . . , M , where τ is a
predefined threshold value and usually set to zero. The binary
vector b is stored as the template. It demonstrates zero or near-
zero EER when both the biometric features and the random
matrix generation key are legitimate. Theoretical analysis of the
BioHashing technique is presented in [22] using the RP theory.
However, the RP theory addresses the distance-preserving prop-
erty in the domain of real numbers, and it is not clear how the

distance is preserved in the quantized domain. The discretiza-
tion procedure may also introduce degradation of verification
accuracy. Moreover, it should be noted that, for a certain system
threshold value, the FRR is not affected by the employment
of a user-specific key. Therefore, the system threshold value
that is selected for near-zero EER will produce a large FAR
in the stolen-key scenario. Furthermore, for anM -bit BioHash
code b, assume that each bit in b is independent; let t be the
threshold value in terms of the Hamming distance; then, when
different keys are applied on the biometric features of the same
user, the probability of false accept is

∑t
i=0

(
M
i

)
/2M . This

probability depends on two factors, the system threshold t and
dimensionM , which reflect the separability and characteristics
of the data and feature extractors. Therefore, the changeability
(as well as the performance in the user-specific key scenario) of
BioHashing is highly dependent on the characteristics and the
dimensionality of the extracted features [3].
Recently, Teoh and Yuang [7] have proposed a multi-

space RP (MRP) method, which applies user-specific RP on
dimensionality-reduced feature vectors without the quantiza-
tion procedure of BioHashing. The distance-preserving prop-
erty of MRP is analyzed based on a normalized inner product,
and a near-zero EER is achieved in the user-specific MRP
scenario. However, their papers lack rigorous privacy and
changeability analysis. As shown in this paper, the privacy
protection of their method is subject to certain attacks. Similar
to the BioHashing technique, the near-zero EER in the user-
specific key scenario will produce a high FAR in the stolen-key
scenario, and it does not provide strong changeability.
In this paper, we generalize the application of RP for change-

able and privacy-preserving biometrics. Specifically, this paper
discusses and compares the feasibility of two different ap-
proaches: 1) RP on high-dimensional biometric data vectors
and 2) RP on low-dimensional biometric feature vectors (as
that in [7]). This paper provides rigorous privacy analysis
and demonstrates that RP on dimensionality-reduced feature
vectors may provide limited privacy protection. This paper also
presents a detailed analysis on the impact of utilizing different
projection matrices. A vector translation method is introduced
to produce biometric templates with strong changeability.

III. METHODOLOGY

This section presents the RP-based method for face-based
biometric verification. We first introduce an overview of the
method. The accuracy, changeability, and privacy analysis are
then discussed in detail.

A. Overview of the Proposed Method

The proposed method is based on RP of face image vectors.
An input image is first preprocessed by detecting the face
region. The preprocessed face image I is converted into a vector
of sizeN × 1 by concatenating all rows of I. The resulting vec-
tor z is regarded as the input vector for feature extraction. The
procedure of producing the changeable and privacy-preserving
biometric template is as follows.

1) Preprocess and obtain an image vector z ∈ �N from the
input face image.
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2) Generate a new data vector z′ = z + d, d ∈ �N and the
elements di 	 t, where t is the system threshold.

3) Use a key k to generate an N × M (M < N) random
matrix R. Each entry of R is independent and identi-
cally distributed (i.i.d.) according to a Gaussian distrib-
ution of mean zero and variance 1/N , rij ∼ N(0, 1/N),
i = 1, . . . , N , j = 1, . . . , M .

4) Compute x =
√

N/MRTz′, where the superscript T
denotes transpose.

The extracted feature vector x is stored as the template for
verification.

B. Accuracy Analysis

This section provides a detailed mathematical analysis of the
similarity-preserving property of RP. RP is motivated by the
Johnson–Lindenstrauss (J–L) lemma [23].

Lemma 3.1 (J–L Lemma): For any 0 < ε < 1 and an in-
teger n, let M be a positive integer such that M ≥ M0 =
O(ε−2 log n). For any set B of n points in �N , there exists a
map f : �N → �M such that, for all u, v ∈ B

(1 − ε)‖u − v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ε)‖u − v‖2. (1)

This lemma states that the pairwise distance between any two
vectors in the Euclidean space can be preserved up to a factor of
ε when projected onto a randomM -dimensional subspace. The
original paper used heavy mathematical machinery to prove
that such mapping can be achieved by using a random matrix
with orthonormal columns. Simplified proofs of RP have been
presented in [24]–[26]. In addition, Arriaga and Vempala [27],
Achlioptas [28], and Li et al. [29] showed that it is possible
to achieve such embedding through much simpler random
matrices for fast operation. Vempala [30] also introduced an
RP method for mapping high-dimensional binary vectors to
low-dimensional ones with the Hamming distance between the
binary vectors approximately preserved.
RP has been used as a dimensionality reduction or privacy-

preserving tool in a wide variety of application context. Andoni
and Indyk [31] introduced the locality-sensitive hashing (LSH)
method to map high-dimensional vectors to low-dimensional
binary code words. Every bit in the LSH code is computed by a
RP followed by a random thresholding. In such, the Hamming
distance between the code words approximates the Euclidean
distance between the vectors. The LSH method has been ap-
plied for fast nearest neighbor search. Other applications of
RP for dimensionality reduction include face recognition [32],
image and text data processing [33] and clustering [34], and
learning of mixture of Gaussian [35]. For privacy protection, in
addition to the biometric applications in [7] and [21], RP has
also been applied for data mining [36] and data clustering [37].
As illustrated in [26] and [28], the key issue in producing

such distance-preserving mapping is to show that the squared
length of a random vector is sharply concentrated around its
mean when projected onto a randomM -dimensional subspace.
Then, the assertion of the J–L lemma can be proved by ap-
plying union bound on all

(
n
2

)
pairs such that none of the

pairwise distance can be distorted more than (1 ± ε). Most
of the existing works utilize inequality properties to provide
a bound for the probability of distance preserving between
two points and then extend to n points and compute the

lower bound M0. However, experimental results in [32] and
[33] suggest that the lower bound M0 is not tight, and it is
possible to produce good results in a lower dimensionality.
Therefore, we are interested in finding to what extent the
distance between two vectors can approximately be preserved
if they are projected to a lower dimensional subspace. This is
particularly important for applications that have a high demand
in storage or computational complexity. In [27] and [28], it is
suggested that RP can be achieved by using a random matrix
with i.i.d. Gaussian entries. Such methods do not need to con-
duct the computationally expensive Gram–Schmidt procedure
for orthonormalization and therefore are more appropriate for
practical applications. Following this line, this paper introduces
a precise method for computing the probability of preserving
the Euclidean distance between two vectors when projected
onto an arbitrary M -dimensional subspace. The probability
lower bound of preserving the pairwise distances for all n
points with respect to arbitrary M is further analyzed. As will
be demonstrated later, for the same probability of distance
preserving for all n points, we can get a better lower bound
M0 than that shown in [28]. To begin with, we first look into
the properties of a random matrix with i.i.d. Gaussian entries.

Lemma 3.2: Let R be an N × M (M < N) matrix. Each
entry of R is an i.i.d. Gaussian random variable with mean
zero and variance 1/N , rij ∼ N(0, 1/N), i = 1, . . . , N , j =
1, . . . , M . LetW = RTR andW ′ = RRT; then

E[wi,j ] =
{

1, i = j
0, i �= j

Var[wi,j ] =
{

2
N , i = j
1
N , i �= j

(2)

E
[
w′

i,j

]
=

{
M
N , i = j
0, i �= j

Var[w′
i,j ] =

{
2M
N2 , i = j
M
N2 , i �= j

(3)

where wi,j and w′
i,j are elements ofW andW ′, respectively.

Proof: Please see Lemma 5.2 and Appendix I in [36] for
the proof. �
The results in Lemma 3.2 show that E[RTR] = I , where I

denotes an identity matrix. When N is large, the elements of
RTR are sharply concentrated around their mean with very
small variance, i.e., RTR ≈ I . This suggests that, in a high-
dimensional space, when the entries of a random matrix R
are i.i.d. Gaussian random variables, the vectors in R are
almost orthogonal. The higher the dimensionality, the bet-
ter the approximation of orthogonality. Intuitively, the results
show that, in a high-dimensional space, vectors with random
directions are very likely to be close to orthogonal [38]. In
particular, it is straightforward to verify that, when rij ∼
N(0, 1/N), E[‖rj‖2] = E[

∑N
i=1 r2

ij ] = 1 and Var[‖rj‖2] =
Var[

∑N
i=1 r2

ij ] = 2/N , where rj denotes each column of R.
This demonstrates that the length of each column vector in R
is strongly concentrated around one, and therefore, the vectors
in R are close to orthonormal. These nice properties of the
random matrix with i.i.d. Gaussian entries imply that it is
possible to relax the enforced orthogonality and normality as
in the original J–L lemma. Similarly, it can be shown that
E[RRT] = (M/N)I . When R is scaled by

√
N/M and with

largeM , we have
√

N/MR
√

N/MRT ≈ I .
Lemma 3.3: Let u be an arbitrary vector in the

N -dimensional Euclidean space, u ∈ �N . LetR be anN × M
(M < N) matrix. Each entry of R is an i.i.d. Gaussian random
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variable with mean zero and variance 1/N , rij ∼ N(0, 1/N),
i = 1, . . . , N , j = 1, . . . , M . Let x =

√
N/MRTu; then

E
[‖x‖2

]
= ‖u‖2 Var

[‖x‖2
]

=
2
M

‖u‖4. (4)

Proof: Please see the Appendix for the proof. �
Lemma 3.3 shows that, up to a scaling factor

√
N/M , the

squared length of an arbitrary vector is concentrated about its
original one when the vector is projected onto a random M -
dimensional subspace. This explains the key issue in producing
distance-preserving mapping, as illustrated in [26] and [28].
The variation of the squared length is inversely proportional to
the dimensionality of the projected subspace. As the dimension-
alityM increases, the degree of concentration becomes sharper.
Lemma 3.3 can easily be extended to the following lemma.

Lemma 3.4: Let u and v be two arbitrary vectors in the
N -dimensional Euclidean space, u ∈ �N and v ∈ �N . Let
R be an N × M (M < N) matrix. Each entry of R is an
i.i.d. Gaussian random variable with mean zero and variance
1/N , rij ∼ N(0, 1/N), i = 1, . . . , N , j = 1, . . . , M . Let x =√

N/MRTu and y =
√

N/MRTv; then

E
[‖x − y‖2

]
= ‖u − v‖2 Var

[‖x − y‖2
]

=
2
M

‖u − v‖4.

(5)

Proof: Replace x by x − y and u by u − v in
Lemma 3.3. �
Lemma 3.4 shows that the expectation of the squared Euclid-

ean distance between two randomly projected vectors is the
squared Euclidean distance between the two original vectors,
and the variance is inversely proportional to the projected
dimensionality. The higher the projected dimensionality, the
smaller the variance, and hence, the better the squared Euclid-
ean distance between two vectors in the transformed domain
being preserved. Similar results of Lemma 3.4 can be found in
[36]. It should be noted that, since the entries of the projection
matrix R are i.i.d. Gaussian random variables, for a fixed
vector u, all elements in the projected vector x = RTu are
also independent Gaussian random variables. This is due to
the two-stability of the Gaussian distribution [28]: For any real
numbers μ1, μ2, . . . , μd, if {qi}d

i=1 is a family of independent
Gaussian random variables with zero mean and unit variance,
let X =

∑d
i=1 μiqi; then, X ∼ cN(0, 1), where c = (μ2

1 +
· · · + μ2

d)
1/2. Similarly, for a vector u − v, the elements of

RTu − RTv = RT(u − v) are independent Gaussian random
variables.

Lemma 3.5: For any ε > 0 and an integer M , let u and v
be two arbitrary vectors in theN -dimensional Euclidean space,
u ∈ �N and v ∈ �N . Let R be an N × M (M < N) matrix.
Each entry ofR is an i.i.d. Gaussian random variable with mean
zero and variance 1/N , rij ∼ N(0, 1/N), i = 1, . . . , N , j =
1, . . . , M . Let x =

√
N/MRTu and y =

√
N/MRTv; then

P
(
(1 − ε)‖u − v‖2 ≤ ‖x − y‖2 ≤ (1 + ε)‖u − v‖2

)
= G

(
M

2
,
(1 + ε)M

2

)
− G

(
M

2
,
(1 − ε)M

2

)
(6)

where G(a, x) is the regularized gamma function, G(a, x) =
(1/Γ(a))

∫ x

0 e−tta−1dt, and Γ denotes the gamma function [39].

Proof: Let xj and ui denote the elements of vectors x and
u, respectively; we have

E[xj ] =E

[
N∑

i=1

√
N

M
rijui

]
=

√
N

M

N∑
i=1

E[rij ]ui = 0

Var[xj ] =Var

[
N∑

i=1

√
N

M
rijui

]
=

N

M

N∑
i=1

Var[rijui]

=
N

M

N∑
i=1

(
E

[
rij2u2

i

] − E[rijui]2
)

=
N

M

N∑
i=1

E
[
rij2u2

i

]
=

N

M

N∑
i=1

1
N

u2
i =

1
M

‖u‖2.

Therefore,
√

M/‖u‖2xj ∼ N(0, 1). Since the elements of x
are independent, let Z = (M‖x‖2)/‖u‖2; then, the random
variable Z is distributed according to a chi-square distribution.
Replace x and u by x − y and u − v, respectively; then, Z =
(M‖x − y‖2)/‖u − v‖2 also follows a chi-square distribution
with degree of freedomM . We have

P
(‖x − y‖2 ≤ (1 + ε)‖u − v‖2

)
= P (X ≤ (1 + ε)M) = G

(
M

2
,
(1 + ε)M

2

)
P

(‖x − y‖2 ≤ (1 − ε)‖u − v‖2
)

= P (X ≤ (1 − ε)M) = G

(
M

2
,
(1 − ε)M

2

)
.

Hence

P
(
(1 − ε)‖u − v‖2 ≤ ‖x − y‖2 ≤ (1 + ε)‖u − v‖2

)
= G

(
M

2
,
(1 + ε)M

2

)
− G

(
M

2
,
(1 − ε)M

2

)
.

Equation (6) provides a precise method for computing the
probability of preserving the squared Euclidean distance be-
tween two vectors in the projected subspace. Fig. 2(a) shows
the probability as a function of dimensionality M and error ε.
It can be observed that, for any fixed error ε, the probability
of preserving the distance between two vectors increases as
the projected dimensionality increases. On the other hand, for
any fixed projected dimensionality, the larger the error factor,
the higher the probability of distance preserving. For example,
even when projected to a low dimensionality ofM = 200, with
probability of 99.68%, the Euclidean distance between two
vectors can be preserved up to an error factor of ε = 0.3. �
Having obtained the probability of preserving the distance

between two fixed points, now, we can apply the union bound
to analyze the probability of preserving the pairwise distance
for all n points. Let α denote the probability in (6); then, for
each of the

(
n
2

)
pairs, the probability of distortion that is larger

than (1 ± ε) is 1 − α. For all the
(
n
2

)
pairs, the chance of some

pairs that do not preserve the distance is at most
(
n
2

) × (1 − α).
Hence, the probability of preserving the pairwise distance for
all the pairs simultaneously is 1 − (

n
2

) × (1 − α). This proves
the following lemma.

Lemma 3.6: For any ε > 0 and an integer M , let any set B
of n points in �N be represented as a matrix D of size N × n.
Let R be an N × M (M < N) matrix. Each entry of R is an
i.i.d. Gaussian random variable with mean zero and variance
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Fig. 2. (a) Probability of pairwise distance preserving as a function ofM and ε. (b) Probability of distance preserving for all n points as a function ofM and ε.
(c) Probability of distance preserving for all n points as a function ofM and n. (d) Comparison of the lower bound ofM with that in [37].

1/N , rij ∼ N(0, 1/N), i = 1, . . . , N , j = 1, . . . , M . Let A =√
N/MRTD, and f denotes the map �N → �M from the ith

column of D to the ith column of A. Then, with probability of
at least 1 − (

n
2

) × (1 − α), for all u, v ∈ B

(1 − ε)‖u − v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ε)‖u − v‖2

where α = G(M/2, ((1 + ε)M)/2) − G(M/2, ((1 − ε)M)/2).
Lemma 3.6 offers a probability lower bound of distance

preserving for all n points when projected onto an arbitrary
M -dimensional subspace. It can be seen that the similarity-
preserving property is determined by three factors, namely,
the cardinality n, the error factor ε, and the projected dimen-
sionality M . In a pattern recognition problem, the error factor
ε depends on a discriminant power of data vectors, and the
cardinality n depends on the number of classes. Fig. 2(b) shows
the probability lower bound as a function ofM and ε with fixed
n. It can be observed that, for an n-class problem, if the original
data vectors are well separated, i.e., it can tolerate large error,
even with a lower dimensionality, the pairwise distances of all
the points can be well preserved. Fig. 2(c) shows the relation
of M and n with fixed ε. It can be observed that, when n is
getting larger, the requirement of increasing the corresponding
M becomes less stringent since, still with high probability,
the distances can be well preserved. Therefore, with properly
selected M , the projection does not need to be altered when n
increases insignificantly. This is important for applications such
as biometrics since we may not want to change the projection
whenever a new user is added to the system.
Different from existing work [28], which uses inequality

properties to analyze the distance-preserving probability be-
tween two points, this paper offers a method to compute the
exact probability of pairwise distance preserving. A direct gain
of this is the possibility of lowering the lower bound of the

required projection dimensionalityM0. To verify this, Fig. 2(d)
shows the lowest required projection dimensionalityM accord-
ing to Lemma 3.6, with the lower bound M0 provided in [28],
which, to our knowledge, is the best-known bound. In [28], it
was shown that, with probability of at least 1 − n−β , where β
controls the probability of success, the pairwise distance be-
tween all n points can be preserved when projected onto a lower
bound of M0 = (4 + 2β)(ε2/2 − ε3/3)−1 log n�. In the plot,
the probability lower bound is set to 1 − (1/n) (corresponds
to β = 1 in [28]). It can be seen that our analysis gets better
dimensionality lower boundM0 than illustrated in [28].

C. Changeability Analysis

In the proposed method, the biometric templates can be
changed by simply varying the RP matrix. To ensure strong
changeability, the biometric templates that are generated from
the same user, using different RP matrices, should not be able
to authenticate each other. Let us consider a scenario where an
impostor compromises the template of a user. The user canceled
the old template and generated a new one by using a different
RP matrix. The impostor then tries to authenticate as the true
user using the old template. Throughout this paper, we use the
subscripts P and G to represent the probing template and the
newly generated template of the claimed identity, respectively.
Since different projection matrices are used, therefore, RP �=
RG. To quantify the probability of error and illustrate the
importance of translating the biometric data, we first consider
a case where RP is applied on the biometric data directly, i.e.,
x =

√
N/MRTz.

Assume that
√

N/MRP = UQP and
√

N/MRG = UQG,
whereU is anN × M matrix, with each entry an i.i.d. Gaussian
random variable with mean zero and variance 1/N , and QP

and QG are two matrices of size M × M . From Lemma 3.2,
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Fig. 3. Demonstration of computing the probability of error in a 2-D space.

UTU ≈ I; we have QP =
√

N/MUTRP and QG =√
N/MUTRG. Due to the two-stability of the Gaussian distri-

bution, the elements of QP and QG are also Gaussian random
variables with zero mean and variance 1/M , and the columns
are almost orthonormal. Therefore, the problem can be formu-
lated as xP =

√
N/MRT

P zP = (UQP )TzP = QT
P (UTzP )

and xG =
√

N/MRT
GzG = (UQG)TzG = QT

G(UTzG). It is
equivalent to first project the biometric data using the same
projection matrix U and then transform the projected feature
vector using different orthonormal matricesQP andQG. When
the same projection matrix is applied on the biometric data, the
Euclidean distance between zP and zG is preserved, as shown
in the previous section.
For changeable biometrics, we are concerned with the proba-

bility of false accept when different transformations are applied
on the biometric data of the same user, which is denoted as
Pf in this paper. Accordingly, the changeability, which is the
probability of a template being changeable, can be defined as
Pc = 1 − Pf . The higher the Pc, the better the changeability.
Since the transformation is random and almost orthogonal, it
corresponds to the rotation of a point in the hypersphere whose
radius is specified by the length (norm) of the point, i.e., the
Euclidean distance between the point and the origin. We have

Pf = P (lxG
− t ≤ lxP

≤ lxG
+ t, S(xG,xP ) ≤ t) (7)

where l denotes the length of the corresponding vector in
the subscript, t is the system threshold, and S represents the
similarity function, i.e., the Euclidean distance in this paper. As
shown in Fig. 3, the computation of (7) needs to be split into two
cases: lxG

≤ t and lxG
> t. In a 2-D space, P (S(xP ,xG) ≤

t|lxG
− t ≤ lxP

≤ lxG
+ t) = πt2/π(lxG

+ t)2 when lxG
≤ t,

and P (S(xP ,xG) ≤ t|lxG
− t ≤ lxP

≤ lxG
+ t)=πt2/(π(lxG

+
t)2− π(lxG

− t)2) when lxG
> t. This can easily be ex-

tended to an M -dimensional space, where the volume of an
M -dimensional hypersphere with radius r is defined as follows
[40]: VM= SMrM/M , where SM is the hypersurface area of an
M sphere of unit radius. In anM -dimensional space, we have

P1 = P (S(xP ,xG) ≤ t|lxG
− t ≤ lxP

≤ lxG
+ t, lxG

≤ t)

=
SM tM

M

SM(lxG
+t)M

M

=
tM

(lxG
+ t)M

(8)

P2 = P (S(xP ,xG) ≤ t|lxG
− t ≤ lxP

≤ lxG
+ t, lxG

> t)

=
SM tM

M
SM(lxG

+t)M

M − SM(lxG|!−t)M

M

=
tM

(lxG
+ t)M − (lxG

− t)M

(9)
Pf = P (lxG

≤ t)P (lxP
≤ lxG

+ t|lxG
≤ t)P1 + P (lxG

> t)
× P (lxG

− t ≤ lxP
≤ lxG

+ t|lxG
> t)P2. (10)

From (10), it is clear that the probability of error depends
on the characteristics of the features, and the dimensionality
M . In general, zero Pf cannot be achieved by applying RP
on the biometric data directly. However, since P (lxP

≤ lxG
+

t|lxG
≤ t)P1 ≤ 1 and P (lxG

> t)P (lxG
− t ≤ lxP

≤ lxG
+

t|lxG
> t) ≤ 1, (10) can be simplified as

Pf ≤ P (lxG
≤ t) +

tM

(lxG
+ t)M − (lxG

− t)M
. (11)

This probability can be minimized by adding an extra vector
d ∈ �N , di 	 t, to the biometric data, z′ = z + d, such that,
after RP, P (lxG

< t) = 0. We have

Pf ≤ tM

(lxG
+ t)M − (lxG

− t)M
(12)

lim
t

lxG
→0∀M

Pc = lim
t

lxG
→0∀M

(1 − Pf ) = 1. (13)

It should be noted that the addition of vector d does not
change the similarity between two vectors since ‖RT(u+d)−
RT(v+d)‖2 =‖RTu−RTv‖2. The preceding analysis shows
that, with appropriate vector translation, the proposed method
can produce biometric templates with changeability 1, by ap-
plying different RPs on the biometric data of the same user.
The system threshold t determines the choice of vector d. The
vector d should be selected such that lxG

	 t and Pc = 1. This
indicates the strong changeability of the proposed method.
The proposed method for changeable and privacy-preserving

biometric verification can also be applied in a two-factor
scheme, in which different users apply user-specific RPs. Note
that, in this case, for a fixed system threshold, the FRR is the
same as that in user-independent projection (same projection
for all the users), since the same random matrix is still applied
for the biometric data from the same user. However, with
proper vector translation, the proposed method is capable of
producing zero FAR in the user-specific scenario since the
xP in (7) can also be generated from other user’s biometric
data. This also explains that zero FAR can be obtained if only
the biometric data are stolen (correct biometric data, wrong
projection matrix). If the projection matrix is stolen, then both
the FAR and FRR will be the same as the user-independent
projection scenario.

D. Privacy Analysis

To preserve the privacy of the users, it is expected that no
information should be disclosed if the stored biometric template
is compromised. The proposed method utilizes RP for biomet-
ric template generation. Due to the randomness of a projection
matrix, the user’s privacy information cannot be compromised
if only the template is obtained by an adversary. However, it
is possible that an attacker can obtain more knowledge and
estimate the original signal. In this paper, we consider three
different attack scenarios.

1) Correlation attack: An attacker obtains several projec-
tions of multiple users.

2) Known projection matrix: An attacker knows the projec-
tion matrix of the user.

3) Cross matching: An attacker obtains multiple projections
of the same user.
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1) Correlation Attack: In this attack scenario, assume that
an attacker does not know the projection matrix R. However,
the attacker obtains multiple projections of multiple users and
utilizes the known information to estimate R. Considering the
projection model, X = RTZ, R ∈ �N×M , Z ∈ �N×P , X ∈
�M×P , where P is the number of projections that are obtained
by the attacker. Each column of Z is a biometric sample (or
features), and each column of X is the projected features,
i.e., Xi = RTZi, i = 1, . . . , P . Note that, without knowing
the set of original vectors Z, it is impossible for an attacker
to estimate the projection matrix R. If both X and Z are
obtained, an attacker may estimate the projection matrix R.
Assuming that the columns of Z are linearly independent, then
the projection matrix can exactly be recovered R = (XZ−1)T

if P = N . When P < N , the projection R matrix cannot
exactly be recovered, and the error of reconstruction increases
as P decreases, and vice versa [41]. Therefore, given a number
of original and projected features known, it is possible for an
attacker to estimate the projection matrix, and the accuracy
of the estimation is inversely proportional to the number of
known original and projected feature pairs. However, as shown
in the next section, even if the projection matrix R is exactly
recovered, the privacy of the users may still be protected.

2) Known Projection Matrix: Assuming the worst case that
both the template and the projection matrix are compromised,
then an adversary can estimate the original biometric data. For a
robust privacy-preserving mechanism, the estimated individual
elements in the data vector should not be exactly the same as
the original ones. Furthermore, the global characteristics of the
estimated data vector should be far apart from the genuine data
vector up to some similarity functions.
Considering a projection function, x = RTz, R ∈ �N×M ,

and the entries of R are i.i.d. Gaussian random variables. An
adversary tries to estimate the values of z. Since M < N , this
is an underdetermined system, where there are more unknowns
than linear equations. There are infinitely many solutions that
satisfy x = RTẑ. To solve this problem, one classical approach
is to find the minimum norm solutions, using ẑ = R(RTR)−1x,
where R(RTR)−1 is essentially the pseudoinverse of R. Since
RTR ≈ I , the aforementioned estimation function can be sim-
plified as ẑ = Rx.
However, although the estimation involves an underdeter-

mined system, and hence, there are infinitely many solutions, it
is possible that an adversary can estimate the partial of the real
values and therefore reveal the partial of the user’s information.
If as many linearly independent equations as the unknown
elements can be found, then some elements may be completely
identified. To solve this problem, Du et al. [42] introduced the
concept of k-secure. For a matrixR, if the remaining submatrix
after removing k columns of R is still of full row rank, the ma-
trix R is called k-secure, which guarantees that it is impossible
to generate an equation (except the trivial zero combination)
that contains less than k + 1 variables [42]. It is further shown
in [36] and [42] that, for a matrixΥ of size (k + 1) × N , where
each row of Υ is a nonzero linear combination of row vectors
in R, if R is k-secure, the linear system of equations y =
Υx involves at least 2k + 1 unknown variables. This property
illustrates that, if R is k-secure, any linear combinations of the
equations contain at least k + 1 variables. Therefore, to solve
the problem of identifying partial of the elements, the projected

dimensionality should satisfy M ≤ (N/2), such that each un-
known variable is disguised by at leastM other variables [41].
Since it is impossible to findM linearly independent equations
that involve these M variables, the solutions to each of the
unknown variable are infinite, and therefore, it is impossible to
find the exact value of any element in the original data vector.
Recall that the projection model in this paper is x =√
N/MRTz; we can estimate ẑ using ẑ =

√
N/MRx [36].

Since x =
√

N/MRTz, we have ẑ =
√

N/MR ×√
N/MRTz = (N/M)RRTz. To analyze the statistical

properties of the estimated individual element, let ẑi be the
ith element of the estimated data vector; using the results in
Lemma 3.2, it is straightforward to derive that

E[ẑi] =E

⎡⎣ N∑
j=1

N

M
w′

i,jzj

⎤⎦ = zi (14)

Var[ẑi] =Var

⎡⎣ N∑
j=1

N

M
w′

i,jzj

⎤⎦
=E

⎡⎣⎛⎝ N∑
j=1

N

M
w′

i,jzj

⎞⎠2⎤⎦ − E

⎡⎣ N∑
j=1

N

M
w′

i,jzj

⎤⎦2

=
N2

M2
E

⎡⎣ N∑
j=1

(
w′

i,j

)2
z2
j + 2

∑
j �=k

w′
i,jzjw

′
i,kzk

⎤⎦ − z2
i

=
N2

M2
E

⎡⎣ N∑
j=1

(w′
i,j)

2z2
j

⎤⎦ − z2
i

=
(

2
M

+ 1
)

z2
i +

1
M

∑
i�=j

z2
j − z2

i

=
1
M

∑
i�=j

z2
j +

2
M

z2
i =

1
M

(‖z‖2 + z2
i

)
. (15)

It can be seen that the expected value of each estimated
element is equal to the true value. Since no single element can
exactly be recovered whenM ≤ (N/2), the variance of ẑi can
be considered as a measure of privacy.
Although the individual element in the original data vector

cannot be correctly estimated, it is possible that the charac-
teristics of the whole estimated data vector still close to the
original data vector up to some similarity function. In this case,
the privacy of the user still cannot be protected. To solve this
problem, we should make sure that the estimated data vector has
a large distance to the original one, i.e., ‖ẑ − z‖2 > τ , where
τ is a privacy threshold. For a biometric verification problem,
the privacy threshold value τ represents the natural variance
of face images and should be set as a value that is larger than
the largest possible distance between data vectors of the same
human subject.
To quantify the probability of preserving privacy, we first

note that the estimation error of individual elements zi − ẑi

approximates a Gaussian distribution with zero mean and vari-
ance (‖z‖2 + z2

i )/M . This is due to the fact that the elements of
W ′ = RRT are almost Gaussian. To validate this, we generate
a random vector of size 10 000 × 1 and normalize it to a
unity length. This vector is considered as the data vector. A
10 000 × 500 matrix is then generated randomly with each
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Fig. 4. Gaussian approximation of the estimation error.

entry an i.i.d. Gaussian random variable. The data vector is then
projected onto the low-dimensional space using the generated
random matrix, followed by a reconstruction procedure as
described earlier. We repeat this process 1000 times on the same
data vector using different random matrices. Fig. 4 shows the
estimation error of the first element of the data vector. It can be
seen that the experimental error distribution fits well with the
statistics shown in (14) and (15).
For real applications, such as face recognition, the dimen-

sionality of a face image vector N is usually large, and
|zi|2 � ‖z‖2. The expected value and variance of ẑi − zi are
E[ẑi − zi] = 0 andVar[ẑi − zi] ≈ ‖z‖2/M . Due to ẑi − zi ∼
N(0, ‖z‖2/M), we have (

√
M/‖z‖2)(ẑi − zi) ∼ N(0, 1),

and therefore, (M/‖z‖2)‖ẑ − z‖2 = (M/‖z‖2)
∑N

i=1(ẑi − zi)2
follows a chi-square distribution with N degree of freedom.
Then, the probability of ‖ẑ − z‖2 > τ can be computed as

P
(‖ẑ − z‖2 > τ

)
= P

(
M

‖z‖2
‖ẑ − z‖2 >

Mτ

‖z‖2

)
= 1 − G

(
N

2
,

Mτ

2‖z‖2

)
(16)

where G denotes the regularized gamma function.
It can be seen that the probability of privacy preserving

with respect to τ is associated with the dimensionality N , the
squared length of the data vector ‖z‖2, and the projected dimen-
sionalityM . When N and ‖z‖2 are fixed, the probability value
monotonically increases as M decreases. However, as shown
in the previous section, theM value is also associated with the
similarity-preserving property. This demonstrates that the RP-
based method has a tradeoff between the privacy level and the
verification accuracy. The higher the projected dimensionality,
the better the accuracy, but possibly, the lower the privacy level,
and vice versa.
Recall that the variance of the estimated individual element

[(15)] and the probability of privacy preserving [(16)] will both
increase as the squared length of the data vector ‖z‖2 increases.
Therefore, the translation vector d, which is used to enhance
the changeability, can enlarge the vector length and can be
used as a complementary approach to enhance the privacy. It
should be noted that, when the vector d is also obtained by the
adversary, the privacy level is not improved and remains the
same as without translation. In real applications, the d vector is
not associated with the user’s key and can be kept secret by a
central control.

3) Cross Matching: In this attack scenario, an attacker ob-
tains multiple projections of the same user. Considering the pro-
jection model, x = RTz, R ∈ �N×M , if the projection matrix

TABLE I
GENERIC DATA SET CONFIGURATION

R is unknown; due to the randomness of the projection, the pro-
jected vectors x exhibit randomness when different projections
are applied on the biometric data of the same user. Therefore,
even if multiple projections of the same user are obtained,
without knowing the projection matrices, no information will
be disclosed for reconstruction of the original vector. However,
if the projection matrices are also disclosed, an attacker may
be able to reconstruct the vector. For an original vector of
dimension N , the projected dimension is M ; let P represent
the number of projections that are compromised by the attacker;
if P ≥ N/M�, where N/M� denotes the ceiling function,
then the attacker can identify N linear equations with N
unknowns, and the original vector can exactly be recovered. For
P < N/M�, it is equivalent to the known projection matrix
scenario that is discussed in the previous section, with the
projected dimension equal to P × M . The larger the P , the
smaller the probability of privacy preserving [(16)].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the introduced method, we
conducted experiments on a generic database that consists of
face images from several well-known databases [43]. In this
section, we first give a description of the employed database,
followed by the experimental results, along with a detailed
discussion.

A. Generic Database

The generic database was initially organized for the pur-
pose of demonstrating the effectiveness of the generic learning
framework [43]. It originally contains 5676 images of 1020
subjects from five well-known databases, namely, FERET [44],
[45], PIE [46], AR [47], Aging [48], and BioID [49]. The details
of image selection can be found in [43]. Since the purpose of
this work is for face verification, we exclude image samples
with large pose variation (> 15◦) and select 4666 images from
1020 subjects for our experiments. All images are aligned and
normalized based on the coordinate information of some facial
feature points. The detailed configuration of the data set is
illustrated in Table I.
The color images are first transformed into gray-scale images

by taking the luminance component in the Y CbCr color space.
All images are preprocessed according to the recommendation
of the FERET protocol, which includes the following: 1) Im-
ages are rotated and scaled so that the centers of the eyes are
placed on specific pixels and the image size is 150 × 130;
2) a standard mask is applied to remove nonface portions; and
3) the histogram equalized and the image normalized to have
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Fig. 5. Procedures for image preprocessing.

zero mean and unit standard deviation. The three steps for
image preprocessing are shown in Fig. 5.
After preprocessing, the face images are converted into an

image vector of dimension N = 17 154. In our experiments,
we randomly select samples from 520 subjects as the training
set while samples of the rest 500 subjects as the testing set.
The training set includes 2388 images, and the testing set
contains 2278 images. There is no overlap between the training
and the testing subjects. To simulate a real application, we
perform evaluation on an exhaustive basis, where every single
image is used as a template once and the rest of the images
as the probe set. All the elements in the translation vector
di, i = 1, 2, . . . , N , are set to 100, and the same d is applied
to all users. To minimize the effect of randomness, all the
experiments were performed five times, and the average of the
results is reported.

B. Experimental Results

1) RP Versus PCA: For the purpose of comparative study,
we first compare the performance of RP with other dimen-
sionality reduction tools. Principal component analysis (PCA)
and linear discriminant analysis (LDA) are two of the most
popular methods for dimensionality reduction and have been
used extensively in the literature as powerful tools for face
recognition applications. Although LDA-based algorithms are
superior to PCA-based methods in some cases, it is shown in
[50] that PCA outperforms LDA when the training sample size
is small and the training images are less representative of the
testing subjects. This is confirmed in [43] that PCA performs
much better than LDA in a generic learning scenario, where
the image samples of the human subjects are not available for
training. Since the small-sample-size problem and unavailabil-
ity of training images are common in real-life applications and
PCA provides more reliable performance, we adopt the PCA
algorithms for comparison in this paper.
PCA is an unsupervised learning technique which provides

an optimal, in the least mean square error sense, representation
of the input in a lower dimensional space. In the eigenfaces
method [51], given a training set Z = {Zi}C

i=1, containing C

classes with each class Zi = {zij}Ci
j=1 consisting of a number

of face images zij , a total ofK =
∑C

i=1 Ci images, the PCA is
applied to the training set Z to find the K eigenvectors of the
covariance matrix

Scov =
1
K

C∑
i=1

Ci∑
j=1

(zij − z̄)(zij − z̄)T (17)

where z̄ = (1/K)
∑C

i=1

∑Ci

j=1 zij is the average of the en-
semble. The eigenfaces are the first J (≤ K) eigenvectors

Fig. 6. EER obtained by using PCA and RP as feature extractors.

corresponding to the largest eigenvalues, denoted as Ψ. The
original image is transformed into the J-dimensional face space
by linear mapping: yij = ΨT(zij − z̄).
The PCA transformation matrix Ψ and the mean image z̄ are

obtained based on the images in the training set, and the images
in the testing set are used for evaluation. There is no overlap
between the training and the testing human subjects. Since RP
does not need a training process, to produce comparable results,
we perform evaluation on the same set of testing images as
PCA. In the report of the experimental results, RP denotes ap-
plying RP on the image vectors directly. Fig. 6 shows the EER
as a function of dimensionality when RP and PCA are applied
as feature extractors. It can be seen that PCA provides better
EER at lower dimensions, and the verification accuracy of RP
improves at higher dimensions. This is because PCA projects
the image vectors to directions with the highest variance, while
RP projects to random directions. As shown in Lemma 3.6, as
the dimensionality M increases, with higher probability, the
Euclidean distance can be preserved up to a smaller error factor,
and hence, the performance improves.
Another observation is that the verification accuracy of both

methods levels off after certain dimensions, 100 for PCA
(EER = 17.54%) and 200 for RP (EER = 18.68%) in our
experiments. For PCA, the projected features after a certain
dimension will have very small variance, therefore contributing
little to the classification. For RP, the verification accuracy
is associated with both the dimensionality of the projected
features and the discriminant power of the image vectors.
When M exceeds a certain dimension, with probability one,
the Euclidean distance can be preserved up to a very small
error factor, and therefore, the verification accuracy depends on
the separability of the original image vectors. To illustrate this,
we performed experiments on the nonprojected original image
vectors, where the Euclidean distance is used as a dissimilarity
measure. This produces an EER of 18.19%. Fig. 7 shows the
receiver operating characteristic (ROC) curves of RP (M =
200) and the verification results of the original image vectors.
The ROC curves are plotted by the genuine acceptance rate
(complement of FRR) against FAR. It can be observed that
the RP and original images have almost overlapping ROC
curves. This demonstrates that the Euclidean distance of the
original images can approximately be preserved. Generally, in
a face recognition problem, PCA provides better discriminant
representation than original noisy face images. This explains
why PCA outperforms RP in our experimentation.

2) RP Versus PCARP: Although the PCA algorithm per-
forms better than RP in general, it provides neither privacy
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Fig. 7. ROC curve of RP and original image vectors.

Fig. 8. EER obtained by using RP and PCARP.

Fig. 9. ROC curves of RP and PCARP.

protection nor revocability. To solve these problems, a possible
solution is to apply RP on dimensionality-reduced PCA feature
vectors, as in [7]. In this paper, this method is denoted as
PCARP. Due to that the original image can approximately be
reconstructed from its PCA coefficients, the reveal of these
PCA coefficients can be considered as a breach of privacy. To
protect these PCA coefficients, the PCARP-projected features
should satisfy M ≤ (J/2), where J is the dimensionality of
the PCA feature vectors.
Fig. 8 shows the obtained EER of PCARP and RP at different

M , with the dimensionality of the PCA vectors J = 2 × M .
Overall, RP and PCARP achieve similar performance. Due to
the fact that PCA features provide better discriminant power
than the original image vectors, the PCARP method requires
lower dimensionality than the RP method to achieve the same
accuracy. Fig. 9 shows the ROC curves of RP and PCARP at
M = 200. It can be observed that RP and PCARP have almost
overlapping ROC curves.

3) Changeability: To demonstrate the changeability of the
proposed method, we performed experiments on the RP- and

PCARP-projected features. The image samples from the same
user are projected using different RP matrices and matched
against each other. Each individual image is also matched
against itself by using different projection matrices. The exper-
iment consists of a total number of 13 922 verification attempts.
The experimental results are shown in Fig. 10, where the
changeability is plotted as a function of the system threshold.
The system threshold is normalized such that zero represents
the lowest value and one is the highest value. Since the
Euclidean distance is applied as the dissimilarity measure, a
smaller threshold value means lower FAR and higher FRR,
and vice versa. It can be observed that, without vector trans-
lation, the changeability is dependent on the system threshold
value and hence cannot produce strong changeability. On the
other hand, with proper translation, it is capable of producing
changeability with probability one for all selections of system
threshold values, i.e., for any system. This demonstrates the
strong changeability of the proposed method.

C. Discussion

The experimental results show that RP offers slight degra-
dation in the verification accuracy comparing with the PCA-
based method. However, the RP method preserves the user’s
privacy if the stored template is compromised. The RP-based
privacy-preserving solution can be applied on either image
vectors or dimensionality-reduced feature vectors. As shown in
our experiments, the PCARP and RP methods produce similar
performance. It is further shown that, through proper vector
translation, both methods are capable of producing strong
changeability, by which means that two biometric vectors that
are generated from the same biometric data using different
projection matrices cannot be used to authenticate each other
successfully.
One advantage of the PCARP method is that it can produce

similar performance at a lower dimensionality. However, the
PCA-based method requires a training process, which usu-
ally involves a large number of training images, and hence,
it has much higher computational requirements. Furthermore,
the collection of a large number of training images poses a
privacy problem. On the other hand, the RP method is data
independent, does not require training, and is much easier
to implement. More importantly, the PCARP method may be
vulnerable to a cross-matching attack. For example, given a
PCA vector of dimensionality J = 200, to produce a privacy-
preserving template, and also highest possible accuracy, we
can project the PCA features to a vector of size M = 100
using RP. However, if the templates of two applications that
use the same PCA transformation matrix are revealed and the
projection matrix for these two applications is different and
also obtained, then an adversary can form a set of J linear
equations with J unknowns, and the PCA feature vectors can
exactly be reconstructed. By using RP directly on the image
vectors, since the dimensionality of such vectors is usually
very high (e.g., N = 17 154 in the generic data set) and the
projected dimensionality is low (e.g., M = 200), an adversary
will need to compromise N/M� = 85 templates from one
user to recover the original image. Although it is possible to
produce better verification accuracy using an advanced fea-
ture extraction method, the vulnerability to a cross-matching
attack is essentially a weakness of applying RP to such
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Fig. 10. Changeability as a function of the system threshold. (Left) RP and (right) PCARP.

low-dimensional feature vectors. Considering all these aspects,
RP on image vectors is a more appropriate solution for privacy-
preserving biometric verification.

V. CONCLUSION

This paper has presented a systematic analysis of the RP-
based method for addressing the challenging problem of
template changeability and privacy protection in biometrics-
enabled verification systems. Detailed mathematical analysis
shows that the similarity between two vectors can approxi-
mately be preserved when projected onto a random subspace
with appropriate dimensionality. We have introduced a precise
method for computing the probability of distance preserving
between two points with respect to the error factor and the pro-
jected dimensionality and provided a probability lower bound
of pairwise distance preserving for all the points. Our method
achieves a better dimensionality lower bound than existing
works. Furthermore, a geometric-based approach has been pre-
sented to analyze the impact of applying different projection
matrices, and an effective method of vector translation has
been introduced to improve the changeability of the generated
templates.
The proposed method produces changeable biometric tem-

plates which can be achieved by simply varying the RP matrix.
To explore the privacy-preserving characteristics of such a
method, we have provided detailed analysis in three different
attack scenarios, namely, correlation attack, known projection
matrix, and cross matching. For the purpose of comparative
study, we have performed computer simulations by using RP
on both image vectors and PCA-reduced feature vectors. Exper-
imental results show that these two methods have similar veri-
fication accuracy and are both capable of producing templates
with strong changeability through appropriate vector transla-
tion. However, it is pointed out that better privacy protection
can be obtained by applying RP on high-dimensional image
vectors directly. Furthermore, such method is data independent,
computationally economical, and easy to implement. In this
paper, we focus on face-based biometric verification. However,
the analysis is general, and it is expected that such methods can
also be applied to other biometrics.

APPENDIX
PROOF OF LEMMA 3.3
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