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Abstract—Biometric encryption (BE) has recently been identi-
fied as a promising paradigm to deliver security and privacy, with
unique technical merits and encouraging social implications. An
integral component in BE is a key binding method, which is the
process of securely combining a signal, containing sensitive infor-
mation to be protected (i.e., the key), with another signal derived
from physiological features (i.e., the biometric). A challenge to
this approach is the high degree of noise and variability present in
physiological signals. As such, fuzzy methods are needed to enable
proper operations, with adequate performance results in terms
of false acceptance rate and false rejection rate. In this work,
the focus will be on a class of fuzzy key binding methods based
on dirty paper coding known as quantization index modulation.
While the methods presented are applicable to a wide range of
biometric modalities, the face biometric is selected for illustrative
purposes, in evaluating the QIM-based solutions for BE systems.
Performance evaluation of the investigated methods is reported
using data from the CMU PIE face database.

Index Terms—Biometric encryption (BE), biometric security
and privacy, facial recognition, fuzzy key binding, quantization
index modulation (QIM).

I. INTRODUCTION

I N MANY engineering designs it is increasingly desirable, if
not indispensable, to ensure provisions for security and pri-

vacy. However, many conventional methods, including various
cryptographic protocols, are traditionally not designed with both
security and privacy requirements. This implies that conflicting
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Fig. 1. BE system for key binding and key release.

design constraints may arise by employing such methods. Re-
cently, it has been established that the biometric encryption (BE)
framework is a useful design approach for systems that support
security as well as privacy [1]–[3]. A practical application of
this framework is currently being investigated for the Ontario
Lottery and Gaming Corporation (OLG) in order to implement
its self-exclusion gaming initiative [4].

As described in [4], and illustrated in Fig. 1, a complete
system implementation requires a number of components to
carry out various tasks, including operational blocks for image
processing, feature extraction, random number generation,
hash function, error-correction coding (ECC), etc. [5]–[7].
A system-level overview of these issues is presented in [4],
with the expected conclusion that achieving good performance
requires applying judicious design choices for all modules.
In particular, both the biometric tasks of identification and
verification are applicable in the considered framework. Iden-
tification is needed to perform one-to-many searches, while
verification is required to perform one-to-one matches. It is
important to note that the function of the key binding block is
to implement verification, comparing a query sample against
the sample(s) of the claimed identity in the database. Clearly,
the key binding module depends on other preceding blocks for
achieving good performance. Moreover, within the class of
key binding methods, several alternatives are feasible. Fig. 1
situates the specific role of the key binding and corresponding
key release blocks in an overall BE scheme. Essentially, the
role of the key binding method is to securely combine a signal
of interest (with sensitive information to be protected, e.g., a
cryptographic key) with another signal (i.e., biometric signal)
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derived from physiological features, such as facial images. The
resulting combined signal is referred to as a secure template
or sketch. The generated template is suitable for storage or
archival, and should divulge neither the protected key (i.e.,
security criterion), nor the user information as exhibited by the
physiological signal (i.e., privacy criterion).

It behooves us to remark that, while in the context of key
binding [8]–[11], the term sketch has also been used when refer-
ring to the output of the key binding module; this usage should
be distinguished from the class of secure sketch described in
[12]–[14]. The secure sketch in the latter category takes as input
the biometric signal itself to generate a key envisioned for cryp-
tographic applications. By contrast, the binary cryptographic
key is already present at the start of the key binding process
(see Fig. 1). The secure template output is, therefore, destined
for storage only, and not necessarily suitable as a cryptographic
key.

The focus of this paper is on the key binding and release
strategies, as well as the associated implementation issues for
BE applications. Within the considered context, several relevant
methods exist to implement key binding [4], [10], [15]. Based
on the fuzzy commitment (FC) approach to realize the one-time
pad principle [7], [16], the so-called Helper Data System (HDS)
is a strategy that carries out key binding on a one-bit-per-fea-
ture-component basis [17]–[20]. In this case, binarization of the
feature vector is explicitly needed, since an XOR operation is at
the heart of this system. While the HDS system has the advan-
tage of simplicity, it is limited in design flexibility due to the
explicit binarization required. Indeed, given a set of binarized
features, the system performance is essentially regulated by the
selection of a suitable ECC scheme. This can be problematic, as
ECC schemes typically admit rather restrictive structures (e.g.,
for a -bit error-correcting code, not all values of would be at-
tainable [6]). As reported in [4], preliminary experimental trials
with practical images when using the HDS approach do not lead
to acceptable performance results, in terms of the false accep-
tance rate (FAR) and false rejection rate (FRR), with conven-
tional ECC schemes. What is more, besides the limited ECC se-
lection, other possibilities for tuning the achievable performance
given a set of binarized features are not available with the HDS
approach.

Another approach is based on Neyman–Pearson detection
to implement a multibit likelihood ratio construction [21],
[22]. In this case, a multibit nonuniform quantizer is applied
for each component. The design of the quantizer is performed
on a per-component and per-subject basis, and is based on
formulating the biometric verification problem as a detection
problem using Neyman–Pearson statistics [21]. Specifically,
each component or a given subject is modeled as an indepen-
dent Gaussian random variable both within the subject class,
and the entire training population. Using this model and an
estimation of the model parameters, a likelihood ratio is formed
for each component. The quantizer is subsequently designed
so that one of the quantizer regions is centered about the
maximum likelihood, thus defining that quantizer region as the
“acceptance region” for that subject-component. The remaining
quantizer regions are defined such that they have equal mass
across the population distribution. While this approach exhibits
theoretical elegance, its performance results in practice are less
optimistic due to various unsatisfied assumptions. Practical

comparison results related to this scheme will be discussed
later in Section VII.

Therefore, an alternative class of key binding methods ad-
dressing some of the described restrictions can be constructed
using quantization index modulation (QIM), which is a partic-
ular realization of the dirty-paper coding principle for water-
marking applications [23]–[25], and subsequently introduced
for biometric systems in [8], [26]. The QIM construction can be
viewed as binding or embedding of a secret message (e.g., the
encoded cryptographic key) using an ensemble of quantizers.
The information to be embedded determines which quantizer
needs to be used, as specified by an associated codebook. It
should be noted that the contributions of the previous works
related to QIM applications in biometric systems have been
mainly of a high-level systematic nature, with performance re-
sults limited to those of synthetic data [8], [10], [26]. There-
fore, in this paper, the contributions involve adapting and ex-
tending the QIM approach to the BE framework of interest.
Specific details regarding various relevant supporting modules,
such as the quantizer design and bit allocation, will be presented.
Furthermore, performance evaluation is practically investigated
using face images from existing databases. The results obtained
demonstrate that the QIM approach offers design flexibility in
balancing the trade-offs in system performance (i.e., FAR and
FRR), depending on the applications envisioned.

The remainder of the paper is organized as follows. In
Section II, the general mechanism of QIM is presented, fol-
lowed by its application for biometric key binding in Section III.
Then, implementation issues related to the quantizer design, the
bit allocation approaches and the performance characteristics of
QIM are respectively described in Sections IV, V and VI. The
performance evaluation results with facial images are presented
in Section VII, followed by concluding remarks in Section VIII.

II. QIM MECHANISM

As previously mentioned, the QIM method is originally tar-
geted for watermarking applications, based on an ensemble of
quantizers [24], [25]. In this work, the focus is on scalar one-di-
mensional quantizers. To this end, consider the following quan-
tizer ensemble formulation.

Definition 1 (Quantizer Ensemble): A set of quantizers
, where the th quantizer has the code

book (of reconstruction points ) defined as

(1)

with , , , as well as,
, , and .

In other words, the quantizer ensemble is defined to have
quantizers with codebooks that are disjoint, and ordered in a
monotonically increasing fashion. Also, the number of recon-
struction points is countable (with countably infinite being a
possibility). Then, the following QIM operation can be consid-
ered.

Definition 2 (QIM): The QIM function takes an input
and a message to produce a reconstruction point

(2)
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which is the output of the quantizer indexed by , being the
reconstruction point of quantizer that is closest
to the input .

The following assumptions are in effect:
1) : A continuous signal (a real number).
2) : A discrete message signal (a binary input vector), corre-

sponding to a set of labels to index the quantizers. The
input signal sets are such that there exists a bijective map-
ping between the binary input set, and the index set of
quantizer labels, i.e., , , .
As discussed later, a Gray map can be effective.

3) : A real number output, from the associated quantizer
codebook ; the reconstruction points constitute a finite
set of points selected from the space of input .

Clearly, the cardinality of the discrete message signal set should
be equal to . Then, the discrete signal serves as an indexed
label to choose a particular quantizer to be applied to the
given input . In fact, given a QIM output , which is possibly
corrupted with noise (i.e., , with being the addi-
tive noise), the identity of the quantizer used can be determined
when is sufficiently small as follows.

Definition 3 (QIM Inverse): Since the codebooks are dis-
joint, an associated decoder can find the quantizer used. This
is achieved by locating the quantizer index associated with the
quantizer which yields the smallest difference between its re-
construction point and the given QIM output

(3)

from which the embedded message .
Note that for this current QIM formulation, the continuous

signal is not needed in the decoder. As such, while the mes-
sage is certainly contained in the output , it is not embedded
in a secret manner, i.e., is not a qualified secure template. In-
deed, in the absence of noise, is deterministically and exactly
linked to a reconstruction point of the quantizer used. In fact, an
alternative feasible decoder that needs neither the original fea-
ture component nor the template can be achieved, with dif-
ferent performance behavior compared to that in (3), as follows.

Definition 4 (Alternative QIM Inverse): Given an arbitrary
QIM output, possibly corrupted with noise the index label
can be located as

(4)

from which the embedded message .
In addition, there are privacy concerns to be considered. Since
is basically a quantized version of (which, in application,

corresponds to the original physiological signal from a user),
the difference between and may not be significant. And
depending on how is encoded from the physiological features,
it may preserve sufficient original data, to the extent that private
information contained in regarding the user would then also
be revealed in . This also implies that retaining would not
be acceptable from a privacy-protection perspective [1], [10].
Therefore, in its unmodified form, this construction of storing
the quantized output value does not seem directly amenable to
key binding. In Section III, it is shown that the existing QIM
function can be modified as a building block to generate a secure
template for key binding.

III. QIM-BASED KEY BINDING

In this section, the application of QIM for key binding [8],
[26] is described. The secure template produced by the key
binding encoder should preserve the original cryptographic
key, i.e., the key should be recoverable from the template. How-
ever, the recovery must only be feasible if certain controlled
criteria are satisfied. In biometric parlance, the enrollment
stage consists of: 1) collecting the physiological signal from
the user, 2) generating a binary input vector (representing a
cryptographic key), and 3) combining the signal collected from
the user with the key . Correspondingly, the verification stage
consists of: 1) collecting the physiological signal from a test
subject, and 2) attempting to perform key release of , based
on the collected signal and the stored secure template. The
verification should only be successful if the test subject is in
fact the original user during enrollment.

A. QIM Encoder for Key Binding

For the purpose of simplicity and clarity, it should be noted
that this section focuses on the encoding and decoding of a par-
ticular feature component of a feature vector. When applying
to a general feature vector, the number of key bits bound by
each feature component needs to be allocated. Such bit allo-
cation strategies will be addressed in Section V. Consider the
following notational definitions (analogous to the variables in
Section II).

1) : A real-valued biometric feature component (used for key
binding during enrollment).

2) : A real-valued biometric feature component (obtained
during verification for key release).

3) : A binary input key to be bound; in the context consid-
ered, consists of a segment of the ECC encoded cryp-
tographic key (see Fig. 1), as given by the bit allocation
strategy (e.g., in Section V). Also, : the set of all possible
inputs with the given bit segment length.

4) : An ensemble of quantizers.
As before, the number of quantizers is designed to be

, i.e., the cardinality of the set of all possible keys (so that
a bijective mapping exists).

Definition 5 (QIM Encoder for Key Binding): The encoder
produces a secure template, from an input key segment and a
biometric component

(5)

Thus, the encoded template is the offset between the input
and the closest reconstruction point of the quantizer .
Fig. 2 summarizes the high-level structure of the encoder for

QIM key binding. Clearly, with perfect knowledge of , the sit-
uation is similar to that in (3) after offset compensation, from
which the output can be used to recover . On the other
hand, knowledge of alone (i.e., without ) does not al-
ways imply knowledge of either or . In other words,
is a feasible candidate for a secure template, suitable for storage
purposes while protecting the privacy of the enrolled subject.

B. QIM Decoder for Key Release

At the decoder, the biometric signal extracted from a test
subject is used to execute the following operations on the secure
template .
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Fig. 2. QIM encoder for key binding.

Fig. 3. QIM decoder for key release.

Definition 6 (QIM Decoder for Key Release): The quantizer
label, associated with the quantizer used for embedding, is first
identified as

(6)

(note that the above optimization is performed over all quan-
tizers, and all reconstruction points for each quantizer) from
which the message embedded is recovered as

(7)

where is an appropriate distance metric (e.g., Euclidean
distance), and is the inverse label mapping operation.

Fig. 3 summarizes the corresponding decoder structure.
In other words, the decoder performs the following actions:
1) compensates for the offset; 2) searches for the closest recon-
struction point from all quantizers in the ensemble; 3) returns
the message associated with the label of the quantizer with
the closest reconstruction.

When the similarity between and is sufficiently high,
these steps successfully extract the originally bound key from
the secure template . In Sections IV and VI, the conditions
and implications under which the key release can be achieved
will be examined in more detail.

IV. QUANTIZER DESIGN

The QIM framework in the literature, as described in Sec-
tion III, establishes the approach in a general manner. In other
words, it leaves open the flexibility of designing the actual quan-
tizers to be used. Generally, for the QIM approach, the size of

Fig. 4. Uniform quantizer ensemble with � � �.

the partitions chosen determines the trade-off between the FAR
and FRR. The class of uniform lattice quantizers [8], [25] is par-
ticularly advantageous, since the associated construction of the
quantizer partitions is simplified.

Definition 7 (Uniform Quantizer Ensemble): Let the number
of quantizers in the ensemble be , where represents
the number of information bits to be bound. The codebooks of
all the quantizers are shifted versions of a base quantizer code-
book . Define a shift parameter (corresponding to
the shift step-size between consecutive quantizers), and let base
quantizer codebook be

(8)

where is the reconstruction point index, and (with
) represents the offset from the point 0. Then the remaining

codebooks are shifted by

(9)

The above definition implicitly assumes that the point 0 is lo-
cated within a finite (nonboundary) quantizer partition. This is
so that a zero-point reference exists for brevity of proof. For a
quantizer ensemble without this property, the relevant discus-
sions can be readily modified to focus instead on a reference
point within a particular finite quantizer partition (e.g., in Ex-
ample 1, the reference point corresponds to the mean value).
Fig. 4 illustrates an example quantizer ensemble for the case of

.
By design, for the first quantizer , the positive reconstruc-

tion point closest to 0 is , from which the
negative reconstruction point closest to 0 is

(10)

When , the set of integers, the quantizer consists of
infinitely many reconstruction points and partitions, where the
size of a partition is (i.e., the partition
size is the same for all quantizers in the uniform ensemble). It is
easy to see that, for each quantizer , the corresponding quan-
tizer partitions are also shifted versions of the base partitions
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. When , the scenario is similar except for
the two boundary partitions: the two left-most and right-most
partitions range respectively as and

.
Proposition 1 (QIM Encoder): Corresponding to (5), the

output of the QIM encoder has the following form for the
uniform quantizer ensemble:

(11)

where is an appropriately defined quantity with
Proof: In the following, we consider the case of

specifically, from which the case follows in a
straight-forward manner by tackling the left-most and
right-most partitions as needed. For a particular quantizer

, let us focus on the partition that includes the
origin 0, namely . Consider the quantity

(12)

which represents the number of quantizer steps away from base.
Then the QIM function (2) can be explicitly represented as (re-
call the label mapping operation is applied)

(13)

where

(14)

Due to the definition of in (12), is bounded, with ,
which is the size of a partition. In addition, from (5), the output
of the QIM encoder is , so that

(15)

from which the required result follows immediately.
Before deriving the decoder operations, let us reconsider the

objectives of the key binding and corresponding key release
schemes. First, the key release should be successful for fea-
ture components sufficiently close to the original value used,
while rejecting components farther away from . As will be seen
shortly, when the original is not available (i.e., not stored in the
database to preserve user privacy, since represents the phys-
iological features of a user), additional constraints need to be
placed on the quantizer encoder in order to realize this goal. Fur-
thermore, it is also clear that the secure template should not
leak information regarding the original key embedded. Ad-
dressing this criterion requires design constraint on the quan-
tizer step-sizes. Therefore, the described two issues of bounded
constraint and secrecy preservation will be examined respec-
tively in the following.

Proposition 2 (QIM Decoder): Corresponding to Definition
6, the QIM decoder for a uniform quantizer ensemble admits a
modulo-operation formulation.

Proof: Focusing once again on the case of for
illustrative purposes, the decoder used to realize (6) is

(16)

with , which searches through all quantizers and re-
construction points to locate the most probable quantizer label.
The above function can also be equivalently achieved with a
modulo-type operation, when a uniform quantizer ensemble is
used

(17)

from which .
However, the inherent modulo operation in the decoder means

that if a particular signal component produces successful key
release with , and , then a subject presenting a
signal component

(18)

also successfully releases the key . On the other hand,
a subject presenting a signal component , with

, will release a different key .
And since ( for embedding one bit of information)

(19)
where , with being the (same) noise value
for to successfully release (actually, it may also be modulo

). As such, a signal component that is further away from the
original signal, viz., , may be accepted, while one that is closer,
viz., , may be rejected (as it should be).

In biometric parlance, this means that a false acceptance oc-
curs in the case of . To take this issue into account more for-
mally, let us consider the following notion of an unambiguous
decoder system.

Definition 8 (Decoder Ambiguity): A decoder is said to be
unambiguous if it has an acceptable region, i.e., the set of veri-
fication signals successfully releasing the bound key, that is sin-
gularly connected (consisting of only a single interval in the
one-dimensional case). In other words, no modulo-type ambi-
guity can exist. More precisely, suppose the signal component
used during enrollment is , then there exists a finite such
that the acceptable region is defined as . By
contrast, any such that belongs to the rejection
region.

On the other hand, a decoder is ambiguous if the accept-
able region consists of multiple (disconnected) intervals. The
number of intervals present in the acceptable region is referred
to as its multiplicity. In this sense, an unambiguous decoder can
be said to have an acceptable region with multiplicity of 1.

Clearly, the decoder in Proposition 2 for is not un-
ambiguous (in fact, it has infinite multiplicity). Reverting to the
unsimplified form in (16), a solution to rectify this undesirable
scenario may entail restricting the decoder to consider only re-
construction points in the partition enclosing the signal compo-
nent under verification. In other words, should be a single
value corresponding to the relevant partition. But, when con-
sidering two different signal components and , this is only
appropriate if the two components are both in the same parti-
tion, ideally in the same partition containing (otherwise both
should be rejected). However, this naive solution does reveal the
necessary constraint: to prevent false acceptance due to the in-
herent modulo-ambiguity, the quantizer ensemble should all be
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limited to the same partition range. In other words, the source
of ambiguity stems from the fact that the quantizer has an ex-
cess of reconstruction points. To this end, the following notion
is useful.

Definition 9 (Truncated Quantizer Ensemble): A quantizer
ensemble in which the constituent quantizers consist of a finite
number of reconstruction points. Moreover, the number of re-
construction points for each of the quantizer may differ.

In other words, corresponding to Definition 1, (i.e.,
a strict subset). The possibly varying number of reconstruction
points can be stated as

(20)

where .
In effect, the truncated ensemble limits the number of recon-

struction points in each of the quantizers. We will consider the
problem of finding the required cardinalities of the sets
later, in Proposition 7. But at this point, we have the following
result.

Proposition 3 (Ambiguity Characterization): Consider a
truncated uniform quantizer ensemble. Let the maximum
number of reconstruction points in the quantizer be (i.e., there
exists at least one quantizer in the ensemble with reconstruc-
tion points). Then determines the multiplicity of the decoder
ambiguity (from Definition 8). In other words,

1) : an unambiguous decoder exists;
2) : an ambiguity of up to in the signal amplitude for

the acceptable set is present, with multiplicity of .
Proof: The proof follows readily from modulo characteri-

zation in Proposition 2. If , there is only one reconstruction
point for each quantizer, so that no modulo ambiguity exists.

On the other hand, when , then in the quantizer with
the maximum number of points, the boundary reconstruction
points lead to an ambiguity. That is, if a signal is accepted,
then a signal of , with is also accepted
in this quantizer. As a result, an acceptable point occurs with
multiplicity , creating different intervals in the (disconnected)
acceptable region.

Minimizing the ambiguity multiplicity is evidently desirable.
However, limiting the number of reconstruction points for this
purpose also introduces new issues. In particular, the size of
the partition , and the location of the reconstruction points on
the number line need to be properly selected. For these issues,
the notion of secrecy preservation previously alluded to is rele-
vant. It will be seen that there is a trade-off between resolving
the ambiguity and controlling the amount of secret information
leakage. To this end, the following definition of functional se-
crecy is useful.

Definition 10 (Functionally Secret System): A key binding
system in which the output template does not deterministically
reveal the quantizer, or correspondingly the input message,
used. That is, there is no value of that deterministically
identifies the quantizer used.

In other words, an attacker should never be able to use only
the output to extract . However, it should be noted that
this definition is rather relaxed in that it imposes no qualification
regarding the possible bias between various quantizers in the
ensemble. In Section VI, a stronger notion of unbiased secrecy
will be explored. It is worthwhile to emphasize that functional

secrecy should be the minimal requirement for a key binding
scheme.

Corollary 1 (Functional Secrecy Characterization): To be
functionally secret, the observed ranges of the encoder output,
conditioned upon the quantizer used, must be identical.

Proof: Clearly, if there are output values that can only be
uniquely found due to a particular quantizer, then whenever
those values occur, that quantizer identity is deterministically
leaked or revealed. Therefore, functional secrecy is violated in
such cases.

However, in order to further motivate the relevance and utility
of this corollary, a constructive counterexample will be actually
given in the following. We will show, for a specific counterex-
ample, that when the quantizer ensemble leads to the observed
output ranges depending on the quantizer used, then functional
secrecy is invalidated.

First, denote the maximum and minimum input values to the
key binding system, respectively, as and . Without
loss of generality, assume that the point 0 is within this range
(otherwise, perform a linear shift with respect to the mean).
Then, consider the following construction of a quantizer en-
semble with . Let the quantizer shift be

, and the offset be , where
. In other words, the base partitions for the two quan-

tizers in the ensemble are designed with reconstruction points

(21)

(22)

In fact, due to construction, only the base partitions will be used
for the given input range . Also, the observed output
values of the key binding system take on the ranges for the
first and second quantizer, respectively, as

(23)

and

(24)

Therefore, the two output ranges due to two different quantizers
are not identical: . As a result, output values that
are unique to a specific quantizer will deterministically identify
the quantizer.

In fact, for the considered example, except the boundary
points, the two ranges are disjoint. As such, there exist
output values for which the quantizer identification is
deterministically revealed or leaked. For example, values of

deterministically identify the quantizer
as , whereas imply the quantizer

. Clearly, the key binding system based on this quantizer
ensemble is not functionally secret.

The preceding constructive proof is actually a specific case of
the following result.

Proposition 4 (Partition Size and Functional Secrecy): If the
quantizer partition size is sufficiently large so as to
completely contain within a single partition the input dynamic
range, i.e., , then the resulting key binding
system is not functionally secret.
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Proof: With an ensemble of quantizers, it suffices to
show that the quantizer identity is revealed for any pair of quan-
tizers. It will be shown that the output ranges are not identical
for this pair of quantizers, whence functional secrecy is violated
(by Corollary 1).

The proof is partially similar to the one presented in Corollary
1. Therefore, for clarity and notational brevity, it is assumed that
the base partition of the base quantizer and the input value
range are aligned together with the same center point so that

(25)

This corresponds in fact to a symmetric alignment of the dy-
namic range and the quantizer partition, and is evidently most
effective for symmetric input distributions. However, when this
condition is not true, a straightforward modification to the proof
presented below can be made to account for the offset from the
center.

Proceeding with the case of the same center, we have the
range of the first quantizer as

(26)

Due to the given condition of complete containment, i.e.,
and , is nondegenerate with

two distinct proper intervals, i.e.,
and .

Next, consider the second quantizer , which has base par-
tition . As such, the
center of this partition is . Then, depending
on the number of quantizers present in the ensemble (e.g., em-
bedding bits requires ), the size of can
be such that either

1)
2) .

In fact, the first case is the one considered already in the proof of
Corollary 1, where functional secrecy is shown to be violated.
Now, for the second case

(27)

Compared to (26), . Therefore, by Corollary 1,
functional secrecy is also violated in the second case.

Thus far, various results regarding decoder ambiguity and
functional secrecy have been established. The connections be-
tween these two notions will now be explored.

Proposition 5 (Unambiguous Decoder and Secrecy Leakage):
An unambiguous quantizer ensemble (with ) is not func-
tionally secret.

Proof: As in Proposition 4, in an ensemble of quan-
tizers, it suffices to demonstrate functional secrecy violation for
any pair of quantizers. Consider the first two quantizers and

. The key criterion enabling our proof in this case is that
(otherwise, no information bit can be embedded

in the ensemble; also see Definition 1). Then, in all cases, the
output ranges of will be different. The following explic-
itly demonstrates this fact for the case where the reconstruc-

tion points are completely contained in the dynamic range, i.e.,
and (other scenarios

are analogous):

(28)

Indeed, it turns out that to be conducive to a key binding
system design, the minimum number of quantizer reconstruc-
tion points in the ensemble is two. By Proposition 3, this implies
that a minimal ambiguity multiplicity of 2 is imposed. For this
case of , the following result is established.

Proposition 6 (Functionally Secret Design With Ambiguity
Multiplicity ): Given knowledge of the input dynamic
range (i.e., maximum and minimal values of the input), there ex-
ists a functionally secret design with an ambiguity multiplicity

for all , where is the number of bits to be
bound.

Proof: In fact, the required design is the truncated uniform
quantizer ensemble with the following parameters. The base
quantizer has the reconstruction points exactly coinciding with
the boundary points

(29)

Also, since there are only two reconstruction points in each
quantizer, the notations introduced in the discussions following
Definition 7 can be used as follows for improved brevity. The
two reconstruction points for a quantizer are and
(with ). Previously, these points refer, respectively,
to the closest points to the left and the right of the zero-point
reference. In this case, the reference is instead the center of the
partition.

Then for

(30)

and for

(31)

(Actually, for , it is also valid to use the first as-
signment.) Then it is straightforward to verify that all quantizers
have an identical output range for of

(32)

Also, refer to Example 1 and the corresponding Table I for an
illustrative construction.

As will be discussed in Section VI, the tolerance of the key
binding system determines its robustness in the presence of
distortions. This tolerance is proportional to the partition size.
Therefore, since the system in Proposition 6 achieves the largest
possible partition size while still maintaining functional secrecy
(see Proposition 4), it can be referred to in some sense as the
“optimal” key binding system in terms of robustness. It should
be noted, however, that knowledge of the absolute max and min
values is required in this construction. In practice, when the
absolute max and min values are not known, a strategy based
on the mean and variance can be employed as follows.
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TABLE I
CODEBOOKS FOR ENSEMBLE WITH � � �, AND BASE QUANTIZER

�� � � � � ���� ��

Example 1 (Truncated Quantizer Ensemble Application): Let
the mean and standard deviation of the input distribution be de-
noted, respectively, as and . Then, the scheme from Propo-
sition 6 can be applied by setting the reconstruction points for

as

(33)

where represents a scaling factor. The remaining quantizers
can then be constructed according to (30) and (31). In effect,
by varying the scaling factor, the partition size is changed pro-
portionally. Evidently, for functional secrecy, the scaling factor
should be limited such that the maximum partition size

. Of course, without exact knowledge of the dy-
namic range, statistical knowledge of the distribution may need
to be used in constraining .

More importantly, the quantizer design parameter can be
used to tune or modify the system performance, with respect
to the FAR and FAR, as will be subsequently described in
Section VI. In addition, a Gray coding scheme [6] is utilized for
labeling the quantizers according to the input binary key bits to
be encoded (i.e., is a Gray mapper), so that incremental
changes in the feature vectors result in incremental changes in
the recovered key.

As an illustrative example, the partitions and code-
books are shown in Table I for the following setting:

, and .
At this point, it is worthwhile to remark that the previous ex-

ample may in fact violate functional secrecy. Recall that while
the requirement of having a partition size less than or equal to
the dynamic range is a necessary condition, it not a sufficient
condition. In Proposition 6, the reconstruction points in the base
quantizer are selected to be exactly the same as the max and
min input values. By Proposition 4, when the reconstruction
points exceed these boundary values, functional secrecy is never
achieved. However, when they are smaller than these boundary
values, functional secrecy is not necessarily guaranteed either.
Instead of formalizing this fact as a proposition, a simple nu-
merical example is offered in the following.

Example 2 (Partition Size and Functional Secrecy Violation):
Suppose the dynamic range is known to be [ 1, 5]. Consider a
quantizer ensemble with two quantizers (i.e., capable binding
1 bit of information) defined with code books: and

. Then the output ranges are,
respectively,

(34)

and

(35)

which, by Corollary 1, violate functional secrecy, since
.

The source of the information leakage in the previous ex-
ample is due to the second quantizer, with a minimal recon-
struction point of 2 that is “too far” from the minimum value
of 2. As such, whenever an input value between oc-
curs and quantizer 2 is used, the identity is immediately revealed
(with output between (2,3]). The next example shows how
this issue can be fixed via insertion of additional reconstruction
points.

Example 3 (Reconstruction Point Insertion for Functional Se-
crecy): With the same initial setup as in Example 2, the fol-
lowing observations can be made. Ideally, the nominal range of
all the quantizers should be , so that
functional secrecy is attained. However, the second quantizer
cannot satisfy this condition since it does not have a reconstruc-
tion point in a sufficiently close neighborhood of the minimum
input value. Instead, let the codebook of the second quantizer be
enlarged as , then it can be readily verified that
the output range as required.

Essentially, in the previous example, an additional recon-
struction point has been inserted, so that the codebook has the
form . Of course, the ambiguity multiplicity
has been increased by 1, by Proposition 3. However, note that
this is the minimum number of reconstruction points needed
in the codebook to support functional secrecy. This notion is
formalized as follows.

Definition 11 (Minimal Ambiguity Quantizer Ensemble): A
quantizer ensemble with the least number of reconstruction
points in each of its quantizer, that is capable of supporting
functional secrecy.

Clearly, the goal is to design a QIM-based key binding system
that possesses functional secrecy, but has the minimal ambiguity
in the associated quantizer ensemble. The following construc-
tion is presented precisely for this objective.

Proposition 7 (Functionally Secret System With Minimal Am-
biguity): Given an input dynamic range of . Then a
quantizer ensemble with a nominal partition size

can be designed to support functional secrecy as follows.
Let the base partition of the base quantizer be ,

where and (by assumption). Then
the following two major steps are performed.

1) Following the same procedure as in Proposition 6:
• for ,

(36)

• for ,

(37)

2) Following the idea of Example 3, for each quantizer insert
reconstruction points to control the leakage, limiting the
output range to .
• For quantizer , compute the distances between

the boundary points: and
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• If , insert to the left of a total of
points of the form

(38)

• Similarly, if , insert to the right of a total
of points of the form

(39)

Proof: The proof is mostly straightforward in this case,
due to the constructive nature of the described scheme. The first
step starts with the minimum number of two quantization points
needed for functional secrecy (see Proposition 5). Since any po-
tential functional secrecy violations would occur with respect
to the boundary points, the second step inserts the minimum
of reconstruction points needed to rectify these cases (similar
to Example 3). Therefore, the overall scheme achieves func-
tional secrecy, with all quantizers achieving an output range of

.
The approach presented in the preceding proposition repre-

sents a compromise between decoder ambiguity and functional
secrecy, that is biased towards the latter. This criterion is ar-
guably more important, since any leakage of the secret infor-
mation from the supposedly secure template would not be ac-
ceptable.

V. BIT ALLOCATION APPROACHES

Another important design issue in QIM implementation for
the considered BE system is bit allocation, or the process of
assigning an integer quantity of bits to be embedded into each
of the biometric feature components [27]. This requirement
has been alluded to in the previous sections, and handled tem-
porarily by an assumption that the encoder and decoder have
been already given a preselected feature component. Moreover,
all the encoding and decoding schemes presented are capable
of operating on -bit keys.

In practice, given an overall number of key bits to be bound, a
sensible scheme must be used to assign the appropriate number
of bits to be bound by each available component. Essentially,
the more reliable a component, the more information it can con-
tain. Given sufficient side information and statistical knowledge,
it is possible to optimize the bit allocation [27]. However, more
simplified approaches are also feasible depending on the feature
extraction methods utilized. Consider the scenario described in
[4], where the Principal Component Analysis (PCA) is utilized
for feature extraction, resulting in feature vectors that consist of
PCA feature components. Then the bit allocation block is re-
sponsible for assigning in some manner these components as
inputs to the QIM encoder (during enrollment), and to the QIM
decoder (during verification). Two approaches can be taken:
1) greedy bit allocation; 2) component-reliability-based bit al-
location.

A. Greedy Bit Allocation

The greedy approach is essentially a two-pass uniform bit
allocation strategy.

1) The number of feature components to be retained needs
to be determined, e.g., based on the PCA energy criterion.
Then, given a total number of bits required to be bound,

an equal number of bits is greedily allocated to each com-
ponent, i.e., each component receives bits uni-
formly in the first pass.

2) In the second pass, any remaining bits
are allocated to the first feature components.

B. Component-Reliability-Based Bit Allocation

More generally, when the feature components are not guar-
anteed to be in a decreasing order of reliability, an alternative
bit allocation is described in this section. First, it is noted that
for the one-bit per component HDS scheme [17], the selection
of bits for key binding is based on utilizing bits that have the
greatest reliability. This leads to a per-user bit allocation policy,
with each user having a different set of bits used for key binding.

Definition 12 (Component Reliability): For a particular user
, the reliability of the Gaussian component (indexed ) is de-

noted as , and is defined as [17]

(40)

where is the subject mean of component , the population
mean of component , and the subject variance.

The rationale for the preceding definition is that, assuming a
Gaussian distribution for the feature component, this reliability
measure is the probability that a new measurement (e.g., during
verification) from the same subject results in the same bit which
was assigned previously (e.g., during enrollment).

The reliability computation requires knowledge of the subject
mean and variance. This implies that, in order to estimate these
statistics, multiple enrollment images are required. Moreover, as
in existing key binding strategies with the notion of reliability
[10], [17], [18] as well as when using a feature extractor such
as the PCA, since the computed statistics may be exposed to an
external observer, some degree of leakage should be anticipated.
In particular, global statistical information regarding a set of
users may be revealed if the system storage mechanism is not
carefully implemented.

The following steps describe the procedure for bit allocation
with QIM. The general idea is to assign the bits in a manner that
best preserves the reliability profile of the feature components.

1) Compute the reliability of each component (establishing a
continuous-valued reliability profile).

2) Apply a threshold for acceptable reliability to obtain the
candidate set (CS). This step is analogous to the decision
in the simple bit allocation case of how many components
to retain (i.e., determining the cut-off point based on the
PCA energy). In more detail,

a) Set a threshold parameter between 0 and 1.
b) Set the highest reliability value.
c) Discard all components with reliability less than

(zero bit allocated).
3) Perform linear rescaling, so that the sum of all the scaled

components in the CS is equal to the number of total bits
required. The scaling factor is computed as

(41)

where is the number of bits to be allocated, the reli-
ability of component , and CS the candidate set. Clearly,
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for linear scaling, the relative importance of components
(according to the original reliability profile) is still main-
tained.

4) Convert the scaled reliability profile to integers as follows:
a) Round the scaled reliability profile.
b) Compute sum of the integer components in the

rounded and scaled reliability profile.
c) Compare to

i) : the allocation is complete.
ii) : the allocation is underestimated. To

compensate, the components with
the highest reliability are each incremented by
1.

iii) : the allocation is overestimated. To
compensate, the nonzero compo-
nents with the lowest reliability are each decre-
mented by 1.

In addition, it should be noted that the analytical results related
to the quantizer design in Section IV are contingent upon the
underlying components being orthogonal to each other, which
is true if they are generated via a PCA-type extractor. Therefore,
when the feature extraction does not have this property, appro-
priate measures should be taken to ensure that this is the case,
e.g., orthogonalization can be explicitly enforced in conjunction
with the bit allocation scheme.

VI. PERFORMANCE CHARACTERISTICS

With the objectives of providing security while preserving
privacy, two main design criteria have been identified: resolving
decoder ambiguity to reduce false acceptances, and controlling
the information leakage to secure sensitive information bound to
the template generated. The following characteristics highlight
the interactive aspects of these criteria.

1) The more reconstruction points present, the higher the am-
biguity, thus affecting the FAR. However, without suffi-
cient reconstruction points, potential leakage of the key bits
may occur, whenever the output ranges of the template ex-
ceed the nominal . This makes it possible for
an unauthorized user to maliciously extract the associated
key bits stored in the template.

2) The larger the partition size, the more likely leakage may
occur. In fact, once the input dynamic range is completely
contained within a partition, functional secrecy is provably
violated.

3) An ambiguity error implies that, instead of submitting a
signal that is within some neighborhood of the original
signal to attack the system, an unauthorized user can also
submit a signal that is within several other neighborhoods,
which are all related to the original neighborhood. Of
course, without knowledge of the original neighborhood,
the attacker does not have a deterministic method to rou-
tinely “guess” these other neighborhoods to compromise
the system. As such, unintentional system malfunctions
due to false acceptances are the main issues with ambi-
guity. In other words, ambiguity would prove to be more
of a nuisance to authorized users, rather than facilitating
unauthorized users significantly.

4) A leakage error due to functional secrecy violation, on the
other hand, is arguably more serious. This is because, once

leakage is detected by a malicious attacker, the attacker can
immediately obtain the identification of the quantizer used.

Based on the apparent degree of severity associated with these
criteria, the approach taken in this work has been to strictly guar-
antee functional secrecy first, without which the system cannot
be suitably used. Then, ambiguity is optimized as much as can
be allowed while preserving functional secrecy. Proposition 7 is
the manifestation of this design approach.

While the discussions have so far focused on the FAR, as it
is related to the security, the FRR is also important in certain
applications, since this latter quantity determines the system ro-
bustness or resilience in the presence of distortions. As will be
seen, the FRR is related also to the partition size used in the
quantizer ensemble.

Let us recast the QIM decoding scheme in the following
manner. After the first offset-compensation step between the
secure template and the biometric component under verification

(42)

As such, can be interpreted as an equivalent additive error,
which represents the difference between the original signal
and the noisy (fuzzy) verification signal . Therefore, for one-
dimensional quantizers with being additive white Gaussian
noise (AWGN), the tolerance of the system, i.e., the tolerable
difference between and for successful verification, is found
as

(43)

where we recall that represents the quantizer step-size, or the
distance between any two closest reconstruction points (from
all quantizers) in the ensemble used. By construction, for a uni-
form quantizer ensemble (Definition 7), . When the
tolerance is satisfied, then the original key can be successfully
extracted upon verification. In other words, if the verification
error is within tolerance, the estimate is the result of suc-
cessful extraction or release of the original from the secure
template .

Actually, from Proposition 2 and the modulo action, de-
pending on how many reconstruction points are in the quantizer,
the acceptable set may also consist of other regions. However,
these regions are spaced apart from the genuine set by multiple
of (the partition size). Evidently, such a large difference
would not represent an error caused by typical random dis-
tortions. In particular, an authorized user who has his or her
verification signal deviating from the original enrollment signal
by such a significant amount should not be accepted by the
system.

These characteristics imply that the system performance mea-
sures can be modified by designing the quantizer ensemble ap-
propriately. For instance, in utilizing the approach of statistical
design (when the absolute max and min values are unknown) in
Example 1, the quantizer step-size can be tuned, by selecting
appropriately, to achieve particular system performance specifi-
cations in terms of the FAR (security), or the FRR (robustness).

In addition, as shown in Fig. 1, when ECC is preapplied to
the input to the QIM encoder, the overall system performance
is also enhanced by the ECC specifications. Moreover, as pre-
viously discussed, while the ECC can be used to modify the
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system performance, it may not be sufficiently flexible. Indeed,
while the quantizer parameter accepts a range of (continuous)
values, the error-correcting capability offered by ECC is typi-
cally limited to a number of (discrete) values [6]. Therefore, the
QIM approach arguably represents a more flexible design for
key binding.

However, the QIM methodology does impose higher com-
plexity, either in computational cost or in storage overhead,
when compared to HDS using an XOR primitive. In particular,
with a large number of quantizers in the ensemble, the cost of
either constructing or storing the codebook may be significant.
Therefore, there is a trade-off to be balanced between perfor-
mance flexibility and resource complexity with the introduction
of a QIM module.

Last but not least, while emphasis has been placed on func-
tional secrecy, this criterion is actually a rather relaxed con-
straint, which represents a minimal requirement. As previously
alluded to in the discussions following Definition 10, functional
secrecy makes no restriction regarding possible bias present in
the quantizer ensemble. The following example illustrates this
issue.

Example 4 (Quantizer Bias and Functional Secrecy): Con-
sider an ensemble of two quantizers. Suppose the configuration
is such that the output values have the following condi-
tional probability density functions (pdfs):

otherwise
(44)

under quantizer , and

otherwise
(45)

under quantizer . Then the system satisfies functional se-
crecy, since the output range is identically [0,1]. However, it is
clear that quantizer has a higher probability for values of

closer to 1, while has a higher probability for values
closer to 0. Therefore, any values other than , at
which the probability is identical, would reveal more bias to-
wards the quantizer used, e.g, an observed value closer to 1 is
more likely to indicate that has been used.

A more refined definition for secrecy preservation may be
formulated as follows.

Definition 13 (Unbiasedly Secret System): A key binding
system in which the output template does not reveal any sta-
tistical bias towards any of the quantizer used. That is, given
a particular value of , no statistical information regarding
the quantizer used can be obtained.

Recall that functional secrecy entails identical range in the
output . A similar result can be readily obtained for unbi-
ased secret system, which should need no detailed proof.

Corollary 2: To be unbiasedly secret, the pdfs of the output
template under different quantizers must be independent and
identically distributed.

While achieving unbiased secrecy is clearly more desirable
compared to functional secrecy, this stricter constraint appears
to limit flexibility, by imposing further constraints on the system
design, and the types of admissible input distributions. The fol-
lowing example explores some implications of unbiased secrecy
requirements.

Example 5 (Unbiased Secrecy and Symmetry Conditions):
Let the input dynamic range be . Consider a simple
quantizer ensemble containing two quantizers, with codebooks

, . Then the
output range is identically .

If the underlying input distribution is
, then the output pdfs are

otherwise
(46)

and

otherwise.
(47)

As such, for unbiased secrecy, the input distribution is
required to be such that

(48)
and

(49)

These two equations imply that a symmetry where the
input distribution consists of two identical half shapes,
placed side-by-side, from and

, would be needed. Therefore, while
a uniform distribution would satisfy this condition, a Gaussian
bell-shaped (with mirror symmetry) input distribution would
not generate unbiased secrecy for this quantizer ensemble.

Similar considerations can be made for the case of ,
with more quantizers in the ensemble. A preliminary investiga-
tion seems to indicate that, besides the trivial case of a uniform
input distribution, the types of symmetry (if any permissible at
all) required may not occur naturally in practical applications.
Therefore, further significant modifications may be needed to
realize unbiased secrecy on a large scale. On the other hand,
functional secrecy represents not only a minimal requirement,
but also is conducive to practical applications.

In closing this section, we remark that while the present work
has explored issues related to the security and privacy of the gen-
erated template, there remains a notable caveat. The protection
of the cryptographic key and biometric signal in the template is
clearly dependent on the secrecy of both of these inputs. If the
key is somehow compromised, then it can be potentially regen-
erated to create a new template. However, what is perhaps prob-
lematic is that whatever signal used to originally bind this key in
the template would also be potentially revealed (up to an ambi-
guity factor, see Proposition 3). If this signal happens to be the
original biometric signal, itself being a permanent feature of an
individual, this leakage is definitely undesirable. While a com-
plete exploration of the various implications is beyond the scope
of this paper, potential directions for future work addressing this
serious issue can be outlined in the following.

It turns out that the class of secure sketch and related fuzzy
extractor systems previously mentioned in Section I seems to
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provide a potential solution. The main idea is that, instead of
using the biometric signal directly to bind the key, the signal
can be first conditioned by a preceding secure sketch/fuzzy ex-
tractor block. The rationale for this approach is that, should a
cryptographic key compromise occur, only the secure sketch ob-
ject would be revealed by the template. Such a secure sketch
object benefits from a wealth of literature regarding the system
analysis as well as issues of key strength and cancelability [14],
[28]–[30]. Of course, this implies that the design of the quantizer
ensemble would also have to take into account the statistical
nature of the secure sketch for efficiency, the results of which
should form the subject of a future work.

VII. PERFORMANCE EVALUATION WITH FACIAL

BIOMETRIC MODALITY

A. Experimental Setup

Images from the CMU PIE database are utilized to assess the
performance of the proposed QIM methods. The feature extrac-
tion is selected to be PCA for baseline evaluation. The exper-
imental setup is similar to that in [4], in which various impli-
cations related to the system-level aspects are also discussed.
Since this paper is focused on the key binding module, only a se-
lective set of simulation scenarios will be pursued. The reader is
referred to [4] for a more comprehensive treatment. To this end,
the salient parameters are summarized. The simulation database
contains 68 individuals with face images captured under three
frontal poses under seven illumination conditions, giving a total
of about 21 samples per subject (with some faces missing). From
the database, a gallery set was created (containing all but one
of the images for each of the subjects), as well as a probe set
(containing the single remaining image for each subject). The
gallery set is used for training the feature extractor and the BE
modules as well as enrollment of the subjects. The probe set is
used for testing the recognition performance, while the PCA is
trained on the gallery set. In order to retain 95% of the signal
energy, the first 154 PCA components are selected for bit allo-
cation. In other words, depending on the target key length, each
component may be used to bind a different number of key bits,
as described in Section V.

B. Performance With Various Key Lengths

Fig. 5 shows the receiver-operating characteristic (ROC) for
various scenarios, each characterized by a certain key length in
the input key to be bound.

In interpreting the results, it should be noted that the spe-
cific values of the operating points on the ROC curves depend
on many factors, including the coding scheme, the feature ex-
traction utilized, etc. And improving the overall performances
requires modifying these constituent methods. In [4], perfor-
mance results with varying system conditions related to the pre-
ceding modules are presented. Here, it is important to focus on
the overall trend for a particular system setting. Indeed, it is
seen that a range of operating points can be achieved, by mod-
ifying the corresponding quantizer step-size. For scenarios re-
quiring higher security (lower FAR), the operating points should
be steered towards the right side of the plot, by selecting a
smaller step-size. Conversely, a larger step-size can be selected
to achieve higher tolerance, steering the operating points to the

Fig. 5. ROC with various key lengths.

left side of the plot (lower FRR). Therefore, in applications re-
quiring particular performance requirements, the QIM approach
represents an attractive asset.

Also, when more key bits are to be bound, the overall perfor-
mance degrades, e.g., in increasing the key length from 36-bit to
64-bit, the ROC plot moves upward with a substantial margin.
This is the same behavior found in other key binding strate-
gies. However, what is different here is the ability to generate
the continuous ROC plot from a given set of binarized features.
By contrast, when using other key binding strategies, such as
the HDS and multibit likelihood ratio approaches, the behavior
of the operating points can only be changed by selecting a dif-
ferent coding scheme. In other words, for a selected ECC code,
a single operating point in performance is obtained.

And more importantly, a barrier that prevents these sys-
tems from being practically used is the inability to achieve
sufficiently low FRR. In other words, while low FAR is a
positive characteristic of these systems, reducing the FRR to a
sufficiently low value has appeared elusive with the currently
available ECC codes. For example, using HDS with 16-bit key,
and code length 63, the FAR FRR for the
given data set and preprocessing methods. Clearly, this rep-
resents a system with poor verification performance (besides
that fact that a key length of 16 bits may be deemed insecure).
The main reason is that ECC codes generally cannot achieve an
arbitrary error-correction rate, e.g., the BCH family is limited
to bit errors of approximately 25% or less, even with the most
robust selections. The situation is essentially similar using the
multibit likelihood ratio approach. With the same configuration,
FAR FRR . While this represents improved

performance compared to the HDS case, it is questionable
whether it can be practically used.

C. Performance With Bit Allocation Approaches

Fig. 6 shows first the reliability profile of a typical subject.
It can be seen that the components with the highest reliability
are concentrated at the beginning of the feature vector. There-
fore, as long as the cut-off point is sufficiently accurate, the
simple greedy bit allocation strategy should yield results similar
to those based on reliability. In this case, the cut-off point (how
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Fig. 6. Reliability profile of a typical subject.

Fig. 7. ROC with 36-bit keys, using various bit allocation approaches.

many components to retain) for the simple allocation scheme
is less than 300-component mark (based on the energy of the
PCA), which from the above figure is the approximate point be-
yond which most components can be categorized as unreliable.

However, in general cases, where the PCA is not necessarily
employed, such a straight-forward demarcation for greedy al-
location may not be possible. In those cases, the more flexible
method based on reliability should be more beneficial.

The above observations are clarified by examining the ROCs
corresponding to three different bit allocation strategies, as
shown in Fig. 7. The three cases use the same key length, with
bit allocation methods: 1) random bit allocation (an arbitrary
number of bits assigned to each component); 2) greedy bit
allocation; 3) bit allocation using component-reliability.

The obtained results demonstrate two main points. First,
without a sensible bit allocation scheme, such as when using a
random selection, the results obtained would be substantially
inferior. This is because components that are more reliable
may not be assigned more bits compared to the less reliable
ones. Second, for the scenario presented, the two proposed bit
allocation approaches yield similar performance. This is due to
the fact that the PCA feature extraction produce feature vectors

Fig. 8. Example distributions of Hamming distances for the genuine and im-
poster users for various bit allocation approaches. (a) Bit allocation using com-
ponent-reliability; (b) greedy bit allocation; (c) random bit allocation.

with ordered components. Then a greedy approach which
exploits this underlying characteristic essentially produces
the same bit allocation as the one based on actual reliability
computations.

Last but not least, to reveal in more specific detail the local
behavior of the examined system, the distributions of the key
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bits, as exhibited by the Hamming distance, for the genuine and
imposter users are shown in Fig. 8.

The illustrated results reinforce the similarities in per-
formance between the greedy bit allocation and that using
component reliability for the given scenario (which is also true
on a more global scale, as supported by Fig. 7). In this case, the
distributions illustrate a more local performance corresponding
to a specific operating point. The applicable BCH code is
(63,36,5), which implies that a Hamming distance greater than
5 (equivalently, a difference of more 5 bits in the recovered
key) is rejected by the system. Therefore, considering Fig. 8(a)
specifically for the genuine plot, the total probability due to bin
5 and higher contributes to the FRR. Similarly, for the imposter
plot, the total probability due to the first two bins represents the
FAR. The operating point illustrated by these two plots is thus
FAR FRR . A similar interpretation can

be readily made for the remaining two bit allocation approaches
in Fig. 8(b) and (c) in analyzing the local behavior. By contrast,
these details are not evident in the higher-level ROC plots
shown in Fig. 7), which is more useful in studying the global
behavior.

VIII. CONCLUSION

In this paper, various strategies related to key binding with
QIM in a BE context are examined. Besides the algorithmic
basis and assumptions necessary for QIM, practical implemen-
tation issues, including quantizer design and bit allocation,
are presented. The obtained results demonstrate that the QIM
method facilitates tuning of the system performance. This is
made possible by designing the quantizer ensemble in a struc-
tured manner, which allows for parametric modification of the
quantizer distance. Consequently the system tolerance can be
varied to accommodate requirements in terms of FAR and FRR
for specific conditions. Therefore, the QIM approach represents
a flexible key binding approach that can accommodate a wider
range of envisioned applications.
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